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Abstract

The estimation of fossil-fuel CO2 emissions (ffCO2) from limited ground-based and satellite measurements
of CO2 concentrations will form a key component of the monitoring of treaties aimed at the abatement of
greenhouse gas emissions. The limited nature of the measured data leads to a severely-underdetermined
estimation problem. If the estimation is performed at fine spatial resolutions, it can also be computationally
expensive. In order to enable such estimations, advances are needed in the spatial representation of ffCO2
emissions, scalable inversion algorithms and the identification of observables to measure.

To that end, we investigate parsimonious spatial parameterizations of ffCO2 emissions which can be used in
atmospheric inversions. We devise and test three random field models, based on wavelets, Gaussian kernels
and covariance structures derived from easily-observed proxies of human activity. In doing so, we con-
structed a novel inversion algorithm, based on compressive sensing and sparse reconstruction, to perform
the estimation. We also address scalable ensemble Kalman filters as an inversion mechanism and quantify
the impact of Gaussian assumptions inherent in them. We find that the assumption does not impact the
estimates of mean ffCO2 source strengths appreciably, but a comparison with Markov chain Monte Carlo
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estimates show significant differences in the variance of the source strengths. Finally, we study if the very
different spatial natures of biogenic and ffCO2 emissions can be used to estimate them, in a disaggregated
fashion, solely from CO2 concentration measurements, without extra information from products of incom-
plete combustion e.g., CO. We find that this is possible during the winter months, though the errors can be
as large as 50%.

4



Acknowledgment

Thanks are due to Sharon Gourdji of Stanford University, and Kim Mueller and Abhishek Chatterjee of Uni-
versity of Michigan, Ann Arbor for fruitful discussions regarding algorithms and the challenges of working
with field observations as well as some of the data used in this work.

This work was funded under LDRD (Laboratory Directed Research and Development) Project Number
151293 and Title “Kalman-Filtered Compressive Sensing for High Resolution Estimation of Anthropogenic
Greenhouse Gas Emissions from Sparse Measurements at Global Scale”. Sandia National Laboratories is
a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of
Lockheed Martin Corporation, for the U.S. Department of Energy’s National Nuclear Security Administra-
tion under contract DE-AC04-94AL85000.

5



This page intentionally left blank

6



Contents

1 Introduction 17

2 A sparse reconstruction technique to estimate ffCO2 emissions 19

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.2.1 Estimation of CO2 fluxes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.2.2 Wavelet modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.2.3 Sparse reconstruction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.3 Constructing a multiscale random field model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.4 Formulation of the estimation problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.4.1 Transport model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.4.2 The inverse problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.4.3 Solving the inverse problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.4.4 Enforcing non-negativity of FR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.5 Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.5.1 Comparison of optimization formulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.5.2 Evaluating formulation using compressive sensing metrics . . . . . . . . . . . . . . . . . . . . . 37

2.5.3 Inversions with nightlights as proxy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.5.4 Inversions with built-up area maps as proxy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

2.5.5 Impact of Mcs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

2.5.6 Impact of ε . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

2.5.7 Impact of the number of observation towers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

2.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

7



3 Estimation of ffCO2 emissions using ensemble Kalman filters 53

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.2 Mathematical Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.2.1 Bayesian Inference Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.2.2 Comparison Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.2.3 Sequential Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.2.4 Kalman Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.2.5 Ensemble Kalman Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.3 Overview of the Physics and Numerical Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.3.1 Problem setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.3.2 Inverse modeling and dimensionality reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.3.3 Enforcing non-negativity in EnKF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.4 Numerical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.4.1 Inversions with EnKF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.4.2 EnKF vs MCMC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4 Joint estimation of biogenic and fossil-fuel CO2 fluxes 71

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.2 Objectives and case studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.3 Numerical details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.3.1 Flux domain and resolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.3.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.3.3 Biospheric and ffCO2 covariance structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.3.4 Model of the trend . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.3.5 Covariance, covariate selection and parameter optimization . . . . . . . . . . . . . . . . . . . . 75

4.3.6 Non-negativity constraints on ffCO2 fluxes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.4 Results and discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

8



4.4.1 Model selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.4.2 Disaggregated ffCO2 and biospheric fluxes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5 Conclusions 83

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

Appendix

A Glossary 93

B Measurement locations 95

C Second-best covariates 97

9



This page intentionally left blank

10



List of Figures

2.1 Differences in the nature of spatial distribution of biospheric (left) and fossil-fuel (right) CO2
fluxes. The biospheric fluxes are stationary, whereas ffCO2 emissions are multiresolution
(non-stationary) and correlated with human habitation. The biospheric fluxes are for June
1 - June 8, 2004, obtained from CASA-GFED [1]. The post-processing steps to obtain the
fluxes as plotted are described in [2]. The units of fluxes/emissions are µmoles s−1 m−2 of
C. The ffCO2 emissions are obtained from the Vulcan database [3, 4]. Note the different
colormaps; ffCO2 emissions can assume only non-negative values. . . . . . . . . . . . . . . . . . . . . . 20

2.2 Left: The fraction of wavelet coefficients which are non-zero on each scale l, when subjected
to a wavelet transform using Haars, Daubechies 4 and 6 and Symlet 4 and 6 wavelets. We
see that Haar wavelets provide the sparsest representation. Right: We plot the average value
of the non-zero coefficients (solid lines) and their standard deviation (dashed line). We find
that while Haars may provide the sparsest representation, the non-zero values tend to be
large and distinct. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.3 Top row: Maps of nightlight radiances (left) and built-up area percentage (right), for the
US. Middle row: The sparsity of representation, the correlation between X and fV and the
normalized error ε f between the Vulcan emissions fV and the sparsified form obtained by
projecting it on X. These values are plotted for nightlights (left) and the built-up area maps
(right). Bottom row: Plots of (fpr− fV ) obtained from nightlights (left) and built-up area
maps (right). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.4 Flowchart of the procedure for performing the inversion of ffCO2 emissions. The top half of
the figure was addressed in Sec. 2.3. We start with a collection of wavelet families that could
be used for modeling the emissions, and find that Haars provide the sparsest representation.
Thereafter, we use the Haars to create a “prior” model fpr = cΦ̃ΦΦ

′
R w for the emissions. In

the lower half of the figure, we illustrate the posing and solution of the inverse problem.
Step A, the posing of the inverse problem is described in Sec. 2.4.2. Three slightly different
formulations (Step B), based on how the “prior” is incorporated into the inverse problem, are
also described in the same section. Step C, the StOMP algorithm, is described in Sec. 2.4.3.
Sec. 2.4.4, the description of non-negativity on the ffCO2 emissions, corresponds to Step D. . 30

2.5 Plots of ffCO2 emissions during the 31st 8-day period. Top left, we plot true emissions
from the Vulcan inventory. Top right, the estimates from Approach A. Bottom left and
right figures contain the estimates obtained from Approaches B and C respectively. Each
figure contains the measurement towers as white diamonds. Each figure is also divided into
quadrants. We see that Approach A, unconstrained by fpr provides low levels of (erroneous)
emissions in large swathes of the Western quadrants. Approach B reflects fpr very strongly.
Approach C provides a balance between the influence of fpr and the information in yobs. . . . . 36

11



2.6 Comparison of estimation error (left) and the correlation between true and estimated emis-
sions (right) using Approaches A, B and C. It is clear that Approach B is inferior to the
others. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.7 Reconstruction error (left) and correlation between the true and estimated emissions, using
Approaches A and C, for the Northeast (NE) and Northwest (NW) quadrants. We see that
Approach C, which includes information from fpr, leads to lower errors in both the quadrants
and better correlations in the less instrumented NW quadrant. . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.8 Comparison of the distribution of the elements of AΨΨΨ and AΦΦΦ. We see that Gaussian and
circulant random matrices lead to continuous distributions whereas Hadamard, scrambled-
block Hadamard (sbHadamard) and noiselets serving as sampling matrices lead to AΨΨΨ where
the elements assume discrete values. In contrast, the elements of AH′ assume values which
are spread over a far larger range, some of which are quite close to 1 while others are very
close to zero. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.9 Reconstruction of the ffCO2 emissions from the 35 towers (plotted as diamonds) over one
year. The true emissions are on the left and the reconstructions on the right. We see that the
large scale structure of the emissions have been captured, as seen by the comparisons for
8-day periods number 9 (mid-March), 33 (end of August) and 42 (early November). The
west coast of the US has few towers near heavily populated regions and thus is not very well
estimated. In the middle and bottom rows, we see that the emissions in the Los Angeles-San
Diego region (32.87N, -117.26W) is underestimated. On the other hand, due to the higher
density of towers in the Northeast, the true and estimated emissions are qualitatively similar.
Emissions have units of µmol m−2 s−1 of C (not CO2 ). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.10 Comparison of reconstruction error and correlations. Left: We plot the error between the
reconstructed and true (Vulcan) emissions in blue. In red, we plot the error between fpr

using nightlights and Vulcan emissions. We see that assimilation of yobs leads to signif-
icantly improved accuracy. Right: We plot the accuracy of the spatial distribution of the
reconstructed emissions. The Pearson correlations C(Ek, fV,k) and C(fpr, fV,k) show that in-
corporating yobs improves the spatial agreement of estimated emissions versus the true one
from 0.7 to around 0.9. If the emissions are averaged over 32-day periods, rather than 8-day
periods, the correlation with true (Vulcan) emissions rises even higher. . . . . . . . . . . . . . . . . . . 41

2.11 Plot of the error in, and the correlation between reconstructed emissions and true (Vulcan)
ones. Left: We see that the reconstruction error in the NE quadrant is small compared to
the others. However, the error in each of the quadrants is much larger than the error at the
country level (see Fig. 2.10). Right: Correlation in each of the quadrants. The NE quadrant
is substantially better than the others due to the higher density of towers. . . . . . . . . . . . . . . . . 42

12



2.12 Left: Prediction of ffCO2 concentrations at 3 measurement locations, using the true (Vulcan)
and reconstructed emissions (blue lines) over an 8-day period (Period no. 31). Observations
occur every 3 hours. We see that the concentrations are accurately reproduced by the es-
timated emissions. Right: Projection of the true and estimated emissions on the wavelet
bases for the same period. Coarse wavelets have lower indices, and they progressively get
finer with the index number. We see that the true emissions have a large number of wavelets
with small, but not zero, coefficients. In the reconstruction (plotted in blue), a number of
wavelet coefficients are set to very small values (almost zero) by the sparse reconstruction.
The larger scales are estimated accurately. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

2.13 CDF of emissions in R , before and after the imposition of non-negativity, as described in
Sec. 2.4.4. We see that the CDF of the emissions without non-negativity imposed contains a
few grid-cells with negative fluxes; further, the magnitude of the negative emissions is small.
Thus the spatial parameterization, with sparse reconstruction provides a good approximation
of the final, non-negative emissions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

2.14 Left: Plot of the error in the reconstruction, as performed with built-up area maps (blue line)
and nightlights (black line) as the proxies. Right: Correlation between the true and recon-
structed emissions, as performed with built-up area maps and nightlights as the proxies. The
nightlights-based reconstruction has slightly less reconstruction error and better correlation
with the true emissions, when compared at 8-day temporal resolution. When averaged to a
32-day temporal resolution, emissions obtained via the two methods are very similar. . . . . . . 45

2.15 Left: Emission reconstruction error in the NE (blue) and NW (black) quadrants, when per-
formed with BUA (line) and nightlights (symbols) as proxies. We see that the NW quadrant
is very badly constrained and a change in proxies changes the sign of the error. This is
also seen in the NE quadrant; however, the error magnitudes are far smaller. Right: The
comparison of correlations between true and reconstructed emissions shows similar trends;
nightlights-based estimation produces better reconstructions. . . . . . . . . . . . . . . . . . . . . . . . . . . 45

2.16 Comparison of emission estimates developed using fpr constructed from nightlight radiances
and built-up area maps. Top: Estimated ffCO2 emissions for the 34th 8-day period developed
using nightlight prior (left) and the prior from built-up areas maps (right). Bottom left: we
plot the difference between the two estimates. Bottom right: We plot a scatter plot between
the estimated and prior emissions, for the two prior models. . . . . . . . . . . . . . . . . . . . . . . . . . . 46

2.17 The impact of the number of compressive samples Mcs on the reconstruction of FR (ηR )
and FR ′ (ηR ′ ). ηR and ηR ′ are plotted on the Y1 and Y2 axes respectively. Results are
plotted for the 31st 8-day period. We see that Mcs > 103 does not result in an appreciable
increase in reconstruction quality. Also, Mcs < 102 shows a marked degradation in ηR ′ . . . . . 47

2.18 Impact of measurement error ε. Top left: We plot the true ffCO2 emissions from the Vulcan
inventory. Top right: We plot the estimates calculated using ε = 2.5×10−2. Bottom left, we
plot the reconstructed emissions using ε = 10−1; we see a clear degradation of the recon-
struction. Bottom right: We plot the reconstruction error (%) and the correlation between
the reconstructed and true emissions for various values of ε; a clear degradation is seen.
Reconstruction errors and correlations are plotted on opposing Y-axes. All results are for
the 31st 8-day period. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

13



2.19 Left column: Estimated ffCO2 emissions for the 33rd 8-day period. Inversions were done
with 35 (top), 25 (middle) and 15 (bottom) towers. As the number of towers decreases,
we see that the resolution of estimated emissions decreases. Right column: At the top, we
plot the error in the reconstructed emissions for the three tower sets. There is not much
difference between reconstructions with 25 and 35 towers, but the 15-tower reconstruction
is poor. Right (middle): The correlation between reconstructed and true emissions shows
much the same trend as the reconstruction, with the 15-tower reconstruction having a far
lower correlation over the entire 360-day duration. Right column, bottom: We plot the
sparsity of the estimated wavelet coefficients. We see that as the number of towers decrease,
the wavelet coefficient estimates deviate further from the true values (red crosses). . . . . . . . . 50

3.1 Comparison of MCMC and EnKF approach to estimating the posterior density in Eq. 3.10.
Note the potential for parallelism in the EnKF. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.2 Plots of inferred (left) and true (right) ffCO2 concentrations (top row) and ffCO2 sources
(bottom row) using no observations. The true velocity field was used. We see that the prior
is not very informative. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

3.3 Plots of inferred (left) and true (right) ffCO2 concentrations (top row) and ffCO2 sources
(bottom row) using ffCO2 concentration observations collected on a 15× 15 sensor grid.
The true velocity field was used. We see an immense improvement in the inferred ffCO2
concentration field, and a more informative source inversion. . . . . . . . . . . . . . . . . . . . . . . . . . . 66

3.4 Plots of inferred and true concentration fields (top row) and ffCO2 sources (bottom row)
when assimilating velocity and concentration measurements. . . . . . . . . . . . . . . . . . . . . . . . . . . 67

3.5 Final concentration fields, reconstructed using limited CO2 measurements. The true velocity
field is used. The MCMC reconstruction is on the left and EnKF on the right. The true
solution is in the middle. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

3.6 Reconstruction of sources using the truth velocity. The MCMC reconstruction is on the left
and the EnKF on the right. The true solution is in the middle. . . . . . . . . . . . . . . . . . . . . . . . . . 68

3.7 Plot of the mean of posterior distribution of the amplitudes of 10 GK, inferred using the true
velocity. There is not much difference between the means calculated with MCMC versus
EnKF. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

3.8 Plot of the variance of posterior distribution of GK amplitudes. There is significant differ-
ence in the results of MCMC versus EnKF. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

3.9 Covariance matrix of posterior distribution of GK amplitudes, calculated using MCMC (left)
and EnKF (middle). On the right is the difference between the two. . . . . . . . . . . . . . . . . . . . . 70

4.1 Estimated January biospheric (top) and ffCO2 fluxes (bottom) for June for the real-data
study. Units: moles m2s−1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.2 Estimated June biospheric (top) and ffCO2 fluxes (botom) for June for the real-data study.
Units: moles m2s−1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

14



List of Tables

4.1 Best covariates and covariance model in the real-data case study. Selections for January–
December 2008 are shown. Note: An asterisk indicates a covariate. . . . . . . . . . . . . . . . . . . . . 77

4.2 Best covariates and covariance models for the pseudo-data case study. Selections for January–
December 2008 are shown. Note: An asterisk indicates a covariate. . . . . . . . . . . . . . . . . . . . . 78

4.3 Root mean squared error (RMSE) and correlation coefficient of the estimated biospheric and
ffCO2 fluxes in the pseudo-data case for January and June 2008. CDIAC and CASA-GFED
are considered to provide the true ffCO2 and biospheric CO2 fluxes. . . . . . . . . . . . . . . . . . . . . 78

A.1 Definitions of Greek symbols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

A.2 Definitions of symbols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

B.1 List of observation towers and their locations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

C.1 Second-best covariates and covariance model in the real-data case from January to Decem-
ber 2008. Note: The asterisk denotes a covariate. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

15



16



Chapter 1

Introduction

CO2, produced from the combustion of fossil fuels (ffCO2) form the largest component of net land-atmosphere
exchange in the carbon cycle. The accumulation of ffCO2in the atmosphere is also held responsible for cli-
mate change. The US National Academy of Science has issued a report [5] that proposes monitoring of
ffCO2 emissions as part of a CO2 abatement treaty.

Currently, ffCO2 emission estimates are obtained from inventories which provide ffCO2 fluxes at fine spa-
tiotemporal scales e.g., Vulcan [4], EDGAR [6], ODIAC [6] etc. These inventories begin national or provin-
cial estimates of fossil-fuel production and consumption and convert them to ffCO2 emissions based on
estimates of combustion efficiency. The downscaling to fine spatial and temporal scales is performed us-
ing proxies of human activity e.g., images of light at night [7], population density [8] etc. However, the
bottom-up estimates, when used in atmospheric transport do not reproduce observations of CO2 concentra-
tions (after accounting for biogenic fluxes). This could be due to errors in the atmospheric transport models
or errors in the inventory itself. Being able to infer ffCO2 emissions from CO2 concentrations would provide
independent verification of the inventory. Such an inversion capability (called Greenhouse Gas Information
System in [5]) could also be used to monitor a CO2 abatement treaty.

The inference of spatially-resolved CO2 fluxes from CO2 concentrations (called atmospheric inversions) are
routine for biogenic fluxes and methods to do so are reviewed in [9]. However, the estimation of ffCO2
emissions is rare [10, 11] and limited to estimates for individual cities. The estimation of spatially-resolved
ffCO2 emissions, at the regional scale (e.g., with 100 km resolution) encounters the following challenges:

1. Random field models: The use of limited CO2 concentration measurements in inversions require a
low dimensional model of ffCO2 emissions i.e., a model with few parameters that can nevertheless
reproduce the strongly non-stationary nature of ffCO2 emissions as revealed by inventories. Such
random field (RF) models do not exist.

2. Scalable inversion techniques: ffCO2 emissions are best estimated at global scale. This allows one
to use all measurement modalities. It also does not require one to impose any boundary conditions.
Regional estimates of biogenic CO2 fluxes surround the region of interest with a “control volume” on
which boundary velocities and CO2 fluxes, as obtained from a meteorological model, are imposed as
boundary conditions. This can incur an significant error and contributes to uncertainty in CO2 flux
estimates. However, a global inversion is computationally expensive, and Bayesian methods, which
are used to estimate biogenic CO2 fluxes (and their uncertainties) are reaching their scalability limits.
Thus a need exists to identify an inversion mechanism that is scalable to large-scale global inversions.

3. Measurement variables: ffCO2 signatures may be measured via trace species of incomplete com-
bustion e.g., CO, SO2 etc or via radiocarbon 14C. The introduction of reactive species, e.g., CO, in
the inversion increases the computational cost and limits the inversion to low spatial resolutions [12].
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In contrast, the inclusion of radiocarbon into inversions poses no technical challenges, except that
radiocarbon measurements are very expensive. Thus a requirement exists to establish what needs to
be measured to infer ffCO2 emissions.

4. Accurate atmospheric transport models: These models are perhaps the largest sources of error and
uncertainty in CO2 flux inversions.

In this investigation, we will address aspects related to the first three challenges since they impact the inverse
problem that underlies the ffCO2 estimation problem. The fourth challenge, improving transport models, is
a field in itself.

In Chapter 2 we address the construction of a RF model for ffCO2 emissions. We hypothesize that wavelets
are well suited to represent the strongly non-stationary nature of ffCO2 emissions. We identify the type of
wavelet that provides the most parsimonious model of ffCO2 emissions, and devise a sparse reconstruction
scheme that performs data-driven simplification of the model, and its fitting of CO2 observations simultane-
ously.

In Chapter 3 we explore ensemble Kalman filters (EnKF) as a means of estimating ffCO2 emission fields.
EnKF is a scalable inference capability, but assumes a Gaussian distribution for the variables being inferred.
In this chapter, we explore the ramifications of that assumption. We also develop a spatial parameterization
for ffCO2 emissions, based on Gaussian kernels, which provides a very parsimonious representation when
the sources are localized e.g., in the Great Plains.

In Chapter 4 we address the question of whether ffCO2 and biogenic CO2 fluxes can be estimated jointly
from CO2 observations without tracer/radiocarbon information. The spatial distributions of biogenic CO2
and ffCO2 fluxes are very different and we investigate the hypothesis that the two types of fluxes may be
inferred, in a disaggregated fashion, based solely on their spatial natures. In all the chapters mentioned
above, we will use easily-observed proxies of ffCO2 emissions to construct parsimonious RF models.

In Chapter 5 we summarize our findings.
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Chapter 2

A sparse reconstruction technique to
estimate ffCO2 emissions

2.1 Introduction

The potential role of anthropogenic greenhouse gas emission in climate change has led to a host of policies
that seek to reduce them e.g., the UN-REDD program [13] and the UNFCCC [14]. Emissions of CO2 from
the burning of fossil fuels (for power generation, transportation, industrial and residential use) form the
largest component of these greenhouse gas emissions and any policies aimed at the abatement of fossil-fuel
(ffCO2) emissions are expected to have significant socioeconomic impacts. Monitoring the ability of such
policies to reduce greenhouse gas emissions is a complex endeavor and is expected to receive increasing
attention in the future. To this end, The United States National Academy of Sciences considered the design
of a Greenhouse Gas Information System that would combine measurements of CO2 concentrations and
fluxes, with reports of national inventories of fossil fuels, to estimate ffCO2 emissions [5].

In this report, we present a method for estimating ffCO2 emissions from CO2 concentration measurements
at observation towers. We develop a spatial parameterization for the emissions and an inversion scheme,
based on sparse reconstruction, to calibrate the parametrization. The method is demonstrated on ffCO2
in the United States using synthetic data. Its extension to global scale inversion is conceptually simple.
It will, naturally, require more data. It will also be significantly more computationally demanding, thus
necessitating the development of scalable counterparts of the sparse reconstruction methods described in
this report.

Currently, the best data on ffCO2 emissions are obtained from inventories/databases that are constructed
from national reporting of the consumption of fossil fuels. Some inventories [15, 8, 16] start with national
or provincial estimates of fossil-fuel consumption and disaggregate them using proxies of human habitation
(e.g., population density), whereas others aggregate them from local information of fossil-fuel use pat-
terns [4]. Their accuracy depends on the data used for constructing the inventories, as well as the method;
see [17, 18] for a discussion on their uncertainties and revisions when more data becomes available. In some
cases, these revisions can be large [19].

An alternate way of estimating CO2 emissions is via inversion of atmospheric measurements. In this process,
time-varying CO2 fluxes f are estimated from measurements of time-varying CO2 concentrations at certain
ground-based locations (towers) or satellite soundings of column-integrated CO2 concentrations (yobs). The
CO2 fluxes f are defined on a gridded domain and related to yobs via an atmospheric transport model. Since
the magnitude of f does not impact the wind velocity field and dispersion, CO2 is modeled as a passive scalar
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Figure 2.1: Differences in the nature of spatial distribution of biospheric (left) and fossil-fuel (right) CO2
fluxes. The biospheric fluxes are stationary, whereas ffCO2 emissions are multiresolution (non-stationary)
and correlated with human habitation. The biospheric fluxes are for June 1 - June 8, 2004, obtained from
CASA-GFED [1]. The post-processing steps to obtain the fluxes as plotted are described in [2]. The units of
fluxes/emissions are µmoles s−1 m−2 of C. The ffCO2 emissions are obtained from the Vulcan database [3,
4]. Note the different colormaps; ffCO2 emissions can assume only non-negative values.

and a linear relationship holds
yobs = y+ ε = Hf+ ε, (2.1)

where H is the transport or sensitivity matrix, obtained from a transport model like Weather Research and
Forecasting Model (WRF, [20]). y is the CO2 concentration predicted by the atmospheric model which
differs from its measured counterpart by an error ε. Atmospheric inversion has become a routine tool for
estimating biospheric CO2 fluxes, conditioned on both satellite and ground-based observations [21, 22, 23,
24, 25]. The inverse problem is set up as an optimization between the need to reproduce observations while
adhering to a prior belief regarding the spatio-temporal distribution of fluxes. Since biospheric CO2 fluxes
vary smoothly in space (see Fig. 2.1), the prior modeling of CO2 fluxes is performed with a stationary,
multivariate Gaussian field. The prior covariance provides the regularization in the inverse problem and
allows high-dimensional gridded emissions to be estimated from relatively few measurements, at the cost of
smoothing out fine-scale spatial structures in the estimated fluxes.

There are two methods for calculating these emission estimates : (1) deterministic methods, based on a
variational formulation (which provide a “mean” or a “best-fit” estimation) and (2) Bayesian methods that
provide a measure of the uncertainty in the estimate in addition to the “best-fit”. These methods have been
reviewed in [9]. Kalman filters, too, have been used in these inversions [26]. All these methods are strongly
influenced by the choice of the prior model, and the geostatistical inversion method [27] was developed to
lessen the dependence.

Fig. 2.1 contrasts the spatial distribution of biospheric CO2 fluxes against fV , the ffCO2 emissions from the
Vulcan database [3, 4]. Vulcan provides emissions for the lower 48 states of the US, on a 0.1◦ grid and at an
hourly resolution. The emissions are coarsened to a 1◦ resolution and averaged over the entire year, to obtain
fV . It is clear that the spatial distribution of ffCO2 is correlated with human habitation, is strongly multiscale,
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and may be difficult to represent with a variogram. Instead, we seek a different spatial parameterization that
can represent its strongly multiresolution character. Further, the spatial parametrization must necessarily be
low-dimensional (i.e., have few free/independent parameters) so that it can be used for estimation within the
context of an inverse problem with sparse observations.

In this paper, we construct a spatial parametrization for ffCO2 based on wavelets. We will refer to it as the
Multiscale Random Field (MsRF) model. Wavelets have compact support, form an orthogonal basis set and
are widely used to model non-stationary fields e.g. images [28, 29]. We will reduce the dimensionality of
the MsRF using an easily-observed proxy of human habitation e.g., images of lights at night (henceforth
called nightlights), maps of built-up areas etc. The MsRF so formed will be used in a synthetic atmospheric
inversion test using a novel, sparsity-enforcing optimization method. “Synthetic” here refers to the fact
that CO2 concentration observations will be generated using a model (not the one used in the estimation
procedure) rather obtained from field measurements. The inversion assumes a pure ffCO2 signal i.e., we
can measure the fossil-fuel contribution to the CO2 concentration in a sample, as done in [10, 11]. This
procedure will identify the subset of wavelets in the MsRF that can be actually estimated from the synthetic
observations, while “turning off” the rest. In doing so, it will ensure that the MsRF, as designed, has
sufficient flexibility to extract the information on ffCO2 in the observations. We conclude with a discussion
on the efficiency of the inversion/ffCO2 estimation. The Vulcan inventory will serve as the ’ground-truth”
in our synthetic data inversions.

The paper is structured as follows. In Sec. 2.2, we review existing literature on the construction of ffCO2
inventories, with emphasis on how proxies of human habitation (population density, nightlights etc) are used
to disaggregate national and provincial-level fossil-fuel emissions to finer resolution. We will also review
existing literature on atmospheric inversions (both biospheric and fossil-fuel CO2 fluxes) and compressive
sensing, a wavelet-based image-processing technique that we adapt to our inversion problem. In Sec. 2.3,
we construct two MsRF models, based on nightlights and maps of built-up areas. Sec. 2.4 contains the
formulation of the inverse problem and the algorithm to solve it. In Sec. 2.5, we perform tests with synthetic
data, discuss the quality of the competing MsRFs and examine the impact of various features of the inverse
problem (e.g. number of measurements, errors in measurements etc.). Conclusions are in Sec. 2.6.

2.2 Background

In this section, we review how ffCO2 emission inventories are currently calculated and the shortcomings
in them. This is followed by a discussion of CO2 flux (both fossil-fuel and biospheric) estimation via
atmospheric inversion. We identify the essential difference between fossil-fuel and biospheric CO2 fluxes
and motivate the need for a spatial parameterization for ffCO2 emissions. We then review existing literature
on compressive sensing, which provides the kernel of the spatial parametrization, as well as the optimization
techniques which exploit the regularization such random field models can provide.

2.2.1 Estimation of CO2 fluxes

ffCO2 emissions, calculated from the consumption of fossil fuels, are reported by most countries and pub-
lished by the International Energy Agency (http://www.iea.org) as well the United Nations Statistics Di-
vision [30]. They are usually published after aggregation to the national (and sometimes provincial/state)
levels. ffCO2 emissions can be thought of as a combination of intense point-sources (e.g., electricity gen-
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eration and cement production) and diffuse spatially distributed emissions associated with transportation,
residential and commercial activities. Emissions from individual, geotagged power plants can be obtained
from CARMA [31] whereas [32] provides cement production data; both can be subtracted from national
inventories. The remainder, constituting the diffuse sources, can be disaggregated onto a grid based on a
number of easily-observed proxies of human activity. Emission inventories are generally employed in their
gridded form.

Images of lights at night [33] have been correlated to many socioeconomic parameters [7] and are a com-
mon tool for disaggregating national or regional ffCO2 emission onto a grid. This is discussed in [15], where
gridded inventory with a kilometer resolution was constructed. In contrast, EDGAR (Emission Database for
Global Atmospheric Research, [34]) and CDIAC (Carbon Dioxide Information Analysis Center, [35]) use
population density to perform the disaggregation [16, 36]. In [8] both population density and nightlights
are jointly assimilated to perform the disaggregation. The Vulcan inventory [3, 4] and its follow-on, Hes-
tia [37, 38], follow a more complex method, consisting of both aggregation from census-tract data, as well as
disaggregation to obtain their gridded inventory. They are not directly dependent on nightlights or popula-
tion density. Nightlights and population density differ in their spatial distribution at the small (10 kilometer)
scale and therefore the two disaggregation methods produce different results (see [8, 15] for discussion);
further, the inventories are ultimately dependent on the accuracy of national reporting of emissions, which
raises its own set of uncertainties [39, 18, 17].

ffCO2 emissions or source strengths can also be back-calculated from measurements of CO2 concentrations
using a CO2 transport model. Such an approach requires one to measure the concentration of ffCO2 ,
rather than CO2 , in a given sample. This can performed by either measuring ∆14CO2 or measuring CO
and estimating ffCO2 from CO/CO2 ratios observed in incomplete combustion; see [10] for an example
of the estimation of emissions from Sacramento, California, using airborne measurements. Alternatively,
in conjunction with an atmospheric transport model, one can scale the emissions from an inventory, e.g.,
Vulcan, to reproduce observations in the vicinity of an urban area to estimate its emissions, as performed
for Salt Lake City in [11]. In both cases a single variable was evaluated from the data - the source strength
in case of Sacramento and the scaling factor for Salt Lake City. There was no attempt to back-calculate a
spatially variable quantity.

Spatially variable biospheric CO2 fluxes are routinely obtained via atmospheric inversions, using both
ground-based and satellite measurements. The spatial domain (a region or the entire Earth) is discretized
with a grid; each grid-cell hosts a CO2 flux source. A Bayesian inverse problem is posed using a transport
model that linearly relates CO2 concentration measurements at a set of locations to the strength of each of
the sources. The resolution of the grid and the temporal discretization employed for temporally-varying
– diurnal and seasonal– biospheric CO2 fluxes result in more unknowns that can be constrained by the
observations and regularization is used to reduce the effective dimensionality of the problem. The “true”
fluxes are assumed to be distributed around a “prior”/guess (often obtained from process-based models of
biospheric CO2 fluxes e.g. CASA [40]); the discrepancy between the “true” and prior fluxes is modeled
as a multivariate Gaussian field, whose covariance is calculated beforehand/offline. The inverse problem
thereafter reduces to finding a CO2 flux distribution that is a compromise between reproducing CO2 obser-
vations and deviation from the prior fluxes. The multivariate Gaussian field, along with the prior fluxes,
provide the regularization. Since the inverse problem is linear, the posterior distribution of the fluxes is also
a multivariate Gaussian field. A review of inversion methods can be found in [9]. This approach has been
successfully used with satellite retrievals [21] and ground-based measurements [41]. A scalable variational
approach has successfully obtained global estimates of CO2 fluxes at high resolution using satellite mea-
surements [24, 42], and jointly with ground data [25]. Inversion methods based on ensemble Kalman filters
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and its derivatives have also been successfully used [23, 43, 26].

Given the paucity of observations, the prior fluxes influence the inferred CO2 fluxes strongly [21]. This is
especially true when inversions are required at a fine spatial resolution. The geostatistical inverse method
was constructed to lessen its effect [27]. In [44, 45, 22], the prior fluxes were constructed as a linear model
which included some easily observed proxies of biospheric and fossil-fuel fluxes (e.g., leaf-area index,
population density, per capita GDP etc) with the sensitivities treated as unknowns to be estimated from data.
The inversions inferred spatial patterns in CO2 emissions which reflected both biospheric and anthropogenic
contributions.

To summarize, biospheric CO2 fluxes are routinely estimated from ground and satellite measurements using
a variety of methods. Spatial resolutions finer than 1◦×1◦ and temporal ones that resolve the diurnal cycle,
can be achieved. This capability is due, in large part, to the smooth spatial variation of biospheric fluxes,
which allows them to be modeled as multivariate Gaussian fields, and serves as a regularization in the inverse
problem. In contrast, no such spatial parameterization exists for ffCO2 emissions, limiting current work to
estimating single parameters. In this paper, we will construct a MsRF model for ffCO2 emissions, as a
first step towards enabling their inference via atmospheric inversion. The spatial patterns in nightlights (and
other proxies of human activity) will serve as the source of regularization. The approach will be tested in
a synthetic data problem, where Vulcan [3, 4], which does not use these proxies, will supply the “ground
truth” emissions.

2.2.2 Wavelet modeling

Wavelets are a family of orthogonal bases with compact support i.e., unlike Fourier bases (sines and cosines)
which are defined over [−∞,∞], individual wavelets are defined only over a bounded region (the “compact
support”). Compact support enables wavelets to serve as a flexible parameterization for complicated func-
tions i.e., one can approximately model a complex shape or distribution with a few wavelets. Thus they form
an attractive modeling framework for strongly multiscale ffCO2 emission fields.

Wavelets are generated using a scaling function φ′ which obeys the recursive relationship

φ
′(x) = ∑

i
ciφ
′(2x− i).

A wavelet φ is generated from the scaling function by taking differences in the following manner:

φ(x) = ∑
i
(−1)ic1−iφ

′(2x− i).

Note that the wavelet has compact support. The choice of the filter coefficients ci and φ′ determine the
type of the resulting wavelets. Wavelets with a large number of non-zero filter coefficients have larger
support and are smoother. The simplest are the Haars, which are symmetrical in shape, but not smooth and
not differentiable. They have only their first 2 moments equal to zero. Daubechies order 4 and order 6
(Daubechies 4 and 6) are smoother, with up to 4th− (respectively 6th)-order moments that are zero. They
have wider support and are asymmetrical in shape. Symlet wavelets are a modified form of Daubechies
wavelets, which are more symmetrical. Wavelets can be shrunk and translated to model functions

φs,i = 2
s
2 φ(2sx− i)

where s is the dilation scale and i refers to translation (location). For each increment in scale, the support of
the wavelet halves.
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Wavelets are defined on dyadic (power-of-two) hierarchical or multi-resolution grids. Consider a domain of
size D, discretized by a hierarchy of meshes with resolutions ∆D/D = {1,1/2,1/22, . . .1/2M}. The coarsest
mesh, with ∆D = D is called the scale (or level) s = 0, whereas the finest mesh, with ∆D = D/2M is the
scale M mesh. Wavelets are defined on each of the levels of the hierarchical mesh. Their support spans the
same number of grid-points on each scale i.e., wavelets’ supports halve every level as we traverse down the
hierarchical mesh. Wavelets can be translated or positioned at any grid-cell i,0≤ i≤ 2s−1, on any scale s
of the hierarchical mesh. Thus a wavelet φs,i(x) requires the specification of s and i to denote its position in
the hierarchical grid.

Consider a 1D function g(x) defined on the hierarchical grid. It can be represented as

g(x) = w′φ′(x)+
M

∑
s=1

2s−1

∑
i=0

ws,iφl,i(x).

The coefficients (or weights) ws,i and w′ are obtained by taking projections of f (x),

ws,i =
∫

∞

−∞

g(x)φ
(

x−b
a

)
dx

where b = iL/2s, a = 2s and φ(ξ) is the wavelet on the coarsest level. The compact support of φs,i(x) and
the large number of coefficients ws,i allow one to represent arbitrary f (x) accurately, though not necessarily
efficiently (i.e., with few non-zero ws,i). Fast methods to compute the projection, called wavelet transforms,
exist.

Wavelet transforms of a function are performed using Mallat’s pyramid [46]. Wavelet coefficients ci are
determined by calculating weighted averages and differences, as we proceed recursively from the finest
scale (grid resolution) to the coarsest (where the grid is reduced to 1 cell). The transform of a function g(x),
discretized on the mesh, can be represented by w = W g, though W is never actually formed. w are the
wavelet coefficients or weights. w contains 2M wavelet coefficients. Details on wavelet decompositions and
transforms are in [47, 28].

An arbitrary 2D field e.g., an image, can, in general, be expressed as a linear superposition of wavelets [47,
28]. A function f (x,y), defined on a D×D domain and discretized on a hierarchical 2M×2M mesh, can be
wavelet transformed by applying 1D wavelet transforms repeatedly, e.g., first by rows and then by columns.
In 2D, wavelets of scale s have a support 2M−s×2M−s,0≤ s≤M. A wavelet of scale s can also be “trans-
lated” in space and positioned (in 2D space) at location (i, j),0≤ (i, j)< 2s. Compact support and the ability
to translate wavelets allow them to model complex, non-stationary fields. A 2D wavelet transform results
in 2M×2M wavelet coefficients. If the type of wavelets is chosen judiciously, many ws,i, j may be small and
can be approximated as zero. In such a case we obtain an approximate, but sparse representation of f (x,y)
on the mesh.

2.2.3 Sparse reconstruction

Compressive Sensing (CS) [48, 49] is an efficient means of encoding sparse images. Consider an image g
of size N. Assume, too, that it can be represented sparsely using L� N wavelets. CS asserts that a sparse
image may be sampled compactly by projecting on to a set of random vectors ψi, to obtain a measurement
g′, of size Nm, L < Nm� N,

g′ = ΨΨΨg = ΨΨΨΦΦΦw, (2.2)
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where the rows of ΨΨΨ consist of the random vectors ψ j, and columns of ΦΦΦ consist of the orthonormal basis
vectors φi. ΦΦΦ is a N×N matrix while ΨΨΨ is Nm×N. The bulk of the theory was established in [50, 51, 52].
Sparsity expresses the idea that the “information rate” of a signal may be smaller than its bandwidth and this
“information sparsity” may find a reflection in its concise representation in a suitable set of bases ΦΦΦ (see
Eq. 2.2). ΨΨΨ and ΦΦΦ should be “incoherent”. Incoherence relates to the fact that a concise signal in ΦΦΦ must be
measured in a space ΨΨΨ where it is spread out, so that a few measurements may suffice to capture its behavior.
Further, while sparsity is assumed, the support – the identity of basis vectors with (appreciably) non-zero
weights – is not known a priori and is inferred along with the values of w. The incoherence between ΨΨΨ

and ΦΦΦ is ensured by choosing some well known wavelets bases (Haars, Daubechies 4 and 8) for ΦΦΦ and
random vectors like noiselets [53], random sign ensembles, uniform spherical ensembles, partial Fourier
and Hadamard ensembles [54] for ΨΨΨ. In [55] the authors establish the degree to which compression might
be performed

M ≥CL log(N/L). (2.3)

C is generally 3-5.

In CS, the reconstruction of g (alternatively, w) can be performed using a number of methods. It can be
posed as an optimization of the cost function

ŵ = argmin
w

[
1
2
||g′−Aw||2 +λ||w||1

]
which is a trade-off between the `1 norm of w (to enforce sparsity) and the `2 norm of the misfit between g′
and the signal reconstructed from w. A = ΨΨΨΦΦΦ. This can be solved using Basis Pursuit (BP) [56] or LASSO
(Least Absolute-Shrinkage and Selection Operator) [57]. A slightly different formulation,

minimize
w∈RN

||w||1

subject to ||g′−Aw||2 < ε2, (2.4)

which achieves the same effect, can be addressed using Matching Pursuit (MP) [58], Orthogonal Matching
Pursuit (OMP, [59]) and Stagewise OMP [60] (StOMP). StOMP is much faster and offers many of the
theoretical guarantees of BP. Bayesian equivalents also exist [61, 62], where Laplace priors are used to
enforce sparseness in the inferred w. All these algorithms are general and do not exploit any particular
structure in the signal (except sparsity).

One may also create a model of the wavelet distribution and use it along with sparsity-enforcement when
constraining w. In a typical wavelet transform, the coefficients of the wavelets at different scales and trans-
lations can be stored in a binary tree. The tree can be pruned, a priori, based on a learning set of images
and thereafter employed with MP or OMP [63, 64, 65]. A Bayesian modification removed the need for
a learning set [66]. Comparison with “regular” methods that did not exploit the tree-structure of wavelet
coefficients showed a marked improvement in the quality and speed of reconstruction.

To summarize, CS has some striking parallels with the problem of atmospheric inversion. Fig. 2.1 (right)
reveals that ffCO2 emissions are clustered near the coasts and there are vast areas with little emissions. This
indicates that a sparse wavelet representation of ffCO2 emissions may be possible. Further, in Eq. 2.1 the
transport matrix H serves much the same function as the measurement matrix ΨΨΨ in Eq. 2.2 – it samples the
f and aggregates the contribution of each grid cell to the ffCO2 concentration yobs measured at the sensing
locations. While H is not random, wind flow patterns over the United States are unlikely to align along
wavelets and the incoherence requirement might be met. Given the limited number of measurement sites,
we may only be able to reconstruct a very sparse subset of the wavelet coefficients required to represent
ffCO2 emissions accurately. Sparse reconstruction methods that allow us to do so were reviewed above.
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2.3 Constructing a multiscale random field model

Here, we examine wavelet models of ffCO2 emissions. We seek an approximate representation, which is
low dimensional or sparse i.e., many of the ws,i,k may be set to zero. We subject fV to wavelet analysis.
The emissions are described on a 2M×2M grid, M = 6 i.e., our hierarchical mesh has 6 levels. The spatial
resolution is 1◦×1◦ and the rectangular domain extents are given by the corners (24.5N,-63.5W) and (87.5N,
-126.5W). ffCO2 emissions are restricted to R the lower 48 states of the US.

We select a wavelet type e.g., Daubechies 4, and perform a wavelet transform of fV . At each scale s, we
identify the wavelet coefficient wmax,s with the largest magnitude and set all wavelets |ws,i, j|< wmax,s/1000
equal to zero. In Fig. 2.2 (left) we plot the fraction of non-zero wavelet coefficients, on each scale s, for each
of the wavelet types. We see a significant decrease in the number of wavelet coefficients when using Haar
wavelets, whereas the others show a decrease only at scale 4 and higher. Clearly Haars provide the sparsest
representation of ffCO2 emissions due to their non-smooth distribution in space. In Fig 2.2 (right), we plot
the average and standard deviation of the non-zero wavelet coefficients. Most of the wavelet coefficients
at the finer scales are set to zero, and the means are small, regardless of the wavelet type. We see that
the means and standard deviations shrink, especially after scale s = 3; further, the distributions of wavelet
coefficients arising from the different wavelet types begin to resemble each other. This arises from the fact
that there are sharp boundaries around the areas where ffCO2 emissions occur; when subjected to a wavelet
transform, the region in the vicinity of a sharp boundary gives rise to large wavelet coefficients down to the
finest scale. Thus the few non-zero wavelet coefficients at the finer scales assume similar values, irrespective
of the wavelet type.
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Figure 2.2: Left: The fraction of wavelet coefficients which are non-zero on each scale l, when subjected
to a wavelet transform using Haars, Daubechies 4 and 6 and Symlet 4 and 6 wavelets. We see that Haar
wavelets provide the sparsest representation. Right: We plot the average value of the non-zero coefficients
(solid lines) and their standard deviation (dashed line). We find that while Haars may provide the sparsest
representation, the non-zero values tend to be large and distinct.

Henceforth, we will proceed with Haar wavelets as the basis set of choice for representing ffCO2 emissions,
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since they provide the sparsest representation. We seek a spatial parametrization for ffCO2 emissions, of the
form

f = w′φ′+
M

∑
s=1

∑
i, j

ws,i, jφs,i, j, {s, i, j} ∈W (s) (2.5)

where W (s) is a set containing a small number of Haar bases. We will select the components of W (s)

using an easily observed proxy X of human activity (which correlates with ffCO2 emissions). We will
use radiance calibrated nightlights [67, 33, 68, 69] for the proxy. However, nightlight radiances are also
affected by economic factors [70], and we will explore maps of built-up area [71, 72] as an alternative. As
mentioned in [71], the map of built-up areas uses nightlight radiances in its computations, and so these are
not independent proxies; however the built-up area map also includes information from IGBP (International
Geosphere-Biosphere Programme [73]) land-cover map. The two choices for X will be compared with
respect to (1) sparsity, i.e., the size of W (s) compared to 4M, size of the full complement of wavelet bases on
a 2M×2M grid, (2) the correlation between X and fV and (3) the ability of W (s) to capture fV .

In Fig. 2.3 (top row), we plot maps of the two proxies, coarsened to 1◦ resolution. Comparing with Fig. 2.1
(right), we see that they bear a strong resemblance to fV . We then subject X to a wavelet transform and
set all wavelet coefficients |ws,i, j| < δ to zero, where δ is a user-defined threshold. The bases with non-
zero coefficients are selected to constitute W (s). We reconstitute a “sparsified” proxy, X(s), using just the
bases in W (s), and compute the correlation between X(s) and fV . Finally, we project fV onto W (s), obtain its
“sparsified” form fV

(s)
, and compute the error ε f = ||fV

(s)− fV ||2/||fV ||2, where || ||2 denotes the `2 norm.
In Fig. 2.3 (middle row), we plot the sparsity, correlation and ε f for various values of δ, for both nightlights
and built-up areas. For nightlights, we achieve a sparsity of around 0.25 for δ < 10−2 i.e., we need retain
only a quarter of the Haar bases to represent nightlights. The nightlights so represented bear a correlation
of around 0.7 with fV , and achieve an error ε f of around 0.1. Note that this measure of error reflects the
inability of the MsRF to represent fine-scale details i.e., if we were interested only in spatially-aggregated
quantities, the error using the sparsified representation could be far less. In contrast, using built-up area as
a proxy, we see that while the sparsity achieved is similar, the correlation between X(s) and fV is slightly
higher. The behavior of ε f is similar, except the error increases faster with δ, as compared to nightlights.
However both nightlights and built-up area maps show significant correlation with fV and the sparsified set
of Haar bases that they (i.e., the proxies) provide (using δ = 10−2 in both the cases) allow us to construct a
a low dimensional parametrization of ffCO2 emissions.

Finally, we use X(s) to create a “prior model” fpr = cX(s) for ffCO2 emissions, f. c is computed such that

∫
R

fV dA =
∫

R
fprdA = c

∫
R

(
w′,(X)

φ
′+∑

l,i, j
w(X)

s,i, jφl,i, j

)
dA, {l, i, j} ∈W (s) (2.6)

where R denotes the Lower 48 states of USA and w(X)
l,i, j are coefficients from a wavelet transform of X. This

implies that c is calculated such that both fV and fpr provide the same value for the total emissions for the
US. In Fig. 2.3 (bottom row), we plot the error (fpr− fV ). We see that neither nightlights nor the built-up
area map provide a fpr that is an accurate representation of fV , though they share similar spatial patterns
i.e., fpr may be used to provide regularization for f in an inverse problem, but, by itself, is a poor predictor,
regardless of the proxy X used to create it.
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Figure 2.3: Top row: Maps of nightlight radiances (left) and built-up area percentage (right), for the US.
Middle row: The sparsity of representation, the correlation between X and fV and the normalized error ε f

between the Vulcan emissions fV and the sparsified form obtained by projecting it on X. These values are
plotted for nightlights (left) and the built-up area maps (right). Bottom row: Plots of (fpr− fV ) obtained
from nightlights (left) and built-up area maps (right).
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2.4 Formulation of the estimation problem

In this section, we pose the inverse problem to estimate ffCO2 emissions from limited measurements and
describe a method to solve it. Fig. 2.4 provides a flowchart of the estimation procedure. Sec. 2.3 addressed
the top half of the figure where we (1) selected Haar wavelets for modeling ffCO2 emissions and (2) derived
“prior” models for emissions based on nightlights and built-up area maps. The lower half of Fig. 2.4 illus-
trates the issues addressed in this section. We will use MsRF constructed from Haars to create a model for
the (unknown) ffCO2 fluxes and concentrations (which will also involve an atmospheric transport model).
The fluxes will be constrained by observations of ffCO2 concentrations. We then use sparse reconstruction,
along with the “prior” model to estimate the ffCO2 emissions.

Below, we briefly describe the transport model used to link observations at a set of measurement towers
to emissions on a numerical grid. Thereafter, we pose the estimation problem, followed by a review of the
method used to solve it. Finally, we describe how we enforce non-negativity in the estimated ffCO2 emission
estimates.

2.4.1 Transport model

The transport of CO2 in the atmosphere is modeled using Eq. 2.1. The calculation of the sensitivities H is
described in detail in the supplement to [2], and we provide a summary below.

The elements of the H matrix are calculated using the Stochastic Time-Inverted Lagrangian Transport Model
(STILT) model [74]. STILT has already been used in a number of inversion studies for estimating biospheric
CO2 fluxes [75, 2]. It represents air arriving at the observation locations as an ensemble of particles, and
transports them in reverse using wind fields. These wind fields are generated by numerical weather pre-
diction models, in this particular case, the Weather Research & Forecasting (WRF) model [76] version 2.2.
WRF has been customized for STILT and other transport models [77]. The details of the submodels used
in the WRF-STILT calculations are in the supplementary material of [2]. The grid used for generating H
was three-level, with a 2 kilometer resolution level around the 3 tallest towers (LEF, AMT and WKT; see
Sec. B for details). The 2 km grid was embedded in a 10 km resolution grid over northern the Midwest and
Gulf Coast region and New England, extending to approximately 105◦ W. An outermost, 40 km resolution,
grid covered the rest of the domain (see Fig. 1 in [75] for a diagram). At each measurement location, 500
particles were released every hour and their 10-day back-trajectories calculated using meteorology from
2008.

Concentration footprints (or sensitivities) were calculated at 3-hour intervals by integrating the trajectories
over the North American 1◦× 1◦ grid as described in [74]. The sensitivity of the CO2 concentration at
each observation location due to the flux at each grid-cell (the “footprint”) is calculated in units of ppmv /
µmol m−2 s−1 (ppmv: parts per million by volume). The footprint, which is the adjoint of the transport field,
is calculated by counting the number of particles in a surface-influenced region (defined as a fraction of the
estimated planetary boundary layer height at that grid-cell) for a given time-period spent in the region (for
details, see [74]). When multiplied by a flux field, the sensitivities provide the contribution of fluxes to the
mixing ratios (ppmv) at the measurement location/receptor. These sensitivities, calculated for 2008, were
used in the estimation of biospheric fluxes [78, 26]. The sensitivities for CO2 fluxes with an 8-day resolution
(i.e., the ones used in this work) were obtained, from the 3-hour sensitivities described above by simply
adding the 8× 24/3 = 64 sensitivities that spanned the 8-day period. Thereafter, the grid-cells outside R
were removed to obtain the H matrix used in this study. The size of the H matrix is (KsNs)× (NR K), where
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Figure 2.4: Flowchart of the procedure for performing the inversion of ffCO2 emissions. The top half of
the figure was addressed in Sec. 2.3. We start with a collection of wavelet families that could be used for
modeling the emissions, and find that Haars provide the sparsest representation. Thereafter, we use the
Haars to create a “prior” model fpr = cΦ̃ΦΦ

′
R w for the emissions. In the lower half of the figure, we illustrate

the posing and solution of the inverse problem. Step A, the posing of the inverse problem is described in
Sec. 2.4.2. Three slightly different formulations (Step B), based on how the “prior” is incorporated into
the inverse problem, are also described in the same section. Step C, the StOMP algorithm, is described in
Sec. 2.4.3. Sec. 2.4.4, the description of non-negativity on the ffCO2 emissions, corresponds to Step D.

Ks is the number of tower measurements every year (24/3×45 = 2880), Ns is the number of sensors/towers,
NR = 816 is the number of grid-cells in R , the part of the domain covered by the lower 48 states of the US
and K = 45 is the number of 8-day periods in 360 days (approximately a year).

2.4.2 The inverse problem

We seek to estimate ffCO2 emissions over the region constituting the lower 48 states of the US, averaged
over 8-day periods. The spatial distribution of emissions during an arbitrary 8-day period k is denoted by fk.
We are interested in estimating emissions over an entire year i.e., we seek F = {fk},k = 1 . . .K.
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We will model emissions on the 2M×2M,M = 6 mesh with wavelets:

fk = w′kφ
′+

M

∑
s=1

∑
i, j

ws,i, j,kφs,i, j, {s, i, j} ∈W (s)

= ΦΦΦwk. (2.7)

Note that ΦΦΦ comprises of only those wavelets selected using X and contained in W (s), and not the 4M

wavelets that the grid can support. For the entire year, the expression for emissions becomes

F =


f1
f2
...

fK

= diag(ΦΦΦ, ΦΦΦ, . . . , ΦΦΦ)


w1
w2
...

wK

= Φ̃ΦΦw.

Since ΦΦΦwk models the emissions over all grid-cells, and not just R , F contains emissions over the lower
48 states, as well as the region outside it (where we have assumed that the emissions are non-existent). We
separate out the two fluxes by permuting the rows of Φ̃ΦΦ

F =

(
FR
FR ′

)
=

(
Φ̃ΦΦR
Φ̃ΦΦR ′

)
w,

where Φ̃ΦΦR and Φ̃ΦΦR ′ are (NR K)× (LK) and (NR ′K)× (LK) matrices respectively. Here L is the number of
wavelets in W (s) and NR ′ = 4096− 816 = 3280 is the number of grid-cells in R ′

. The modeled concen-
trations at the measurement towers, caused by FR , can be written as y = HFR . For arbitrary w, FR ′ , the
emissions in the region outside R , are not zero. Consequently, it will be necessary to specify FR ′ = 0 as a
constraint in the inverse problem.

Specifying the constraint FR ′ = 0 directly is not very efficient since it leads to NR ′K constraints. In a
global inversion, or at resolutions higher than 1◦× 1◦, this could get very large. Consequently, we adapt
an approach from compressive sensing to enforce this constraint approximately. Consider a Mcs× (NR ′K)
matrix R, whose rows are direction cosines of random points on the surface of NR ′K-dimensional unit
sphere. This is called a uniform spherical ensemble and is used in compressive sampling [54]. The projection
of the emission field FR ′ on R i.e., RFR ′ compressively samples FR ′ . Setting this projection to zero during
inversion allows us to enforce zero emissions outside R . However, to do so, we add only Mcs constraint
equations rather than NR ′K, which would be the case if we set the emission in each grid-cell in R ′

to zero.
In Sec. 2.5.5, we will investigate the degree of computational saving afforded by imposing the FR ′ = 0
constraint in this manner.

The optimization problem can be written as

Y =

(
yobs

0

)
≈

(
H Φ̃ΦΦR
R Φ̃ΦΦR ′

)
w = Gw. (2.8)

In this equation, G is akin to A discussed in Sec. 2.2.3. It is a “sampling” of a basis set. The R Φ̃ΦΦR ′

component of G is formally a random sampling. The H Φ̃ΦΦR component of G, on the other hand, “samples”
the emission field as guided by the transport processes encoded in H. The left hand side Y is approximately
equal to G w since the observations yobs contain measurement errors that cannot be modeled with H. This
completes Step A in Fig. 2.4.
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The wavelet coefficients w in Eq. 2.8 are not normalized and usually display a large range of magnitudes.
The wavelets in W (s) at finer scales i.e. those with a small support / “footprint” tend to have coefficients
with a large magnitude. Their small footprint cause the fine-scale wavelets to impact only neighboring
measurement towers. In contrast, wavelets at the coarser scales have large “footprints” that span multiple
measurement locations. Total emissions in R , as well as yobs, are very sensitive to their coefficients. Solving
Eq. 2.8, as-is, incorporates no information from X beyond the selection of wavelets to be included in Φ̃ΦΦ. We
explore the incorporation of X in the estimation of w using three different approaches:

Approach A : This is the baseline approach and solves Eq. 2.8 as-is. The lack of normalization of w, in
conjunction with the optimization procedure described below in Sec. 2.4.3, leads to artifacts which will be
described in Sec. 2.5.1.

Approach B : In this formulation, X is included in the optimization as a “prior”. We write the emissions
as F = fpr +∆F. Substituting into Eq. 2.8, we get Y ≈ Hfpr +G∆w, where ∆w = w−w(X). Here, w(X) =

c{w′,(X),w(X)
s,i, j}, {s, i, j} ∈W (s), where c is obtained from Eq. 2.6. It provides a wavelet decomposition of

fpr using the bases in W (s). Simplifying, we get

∆Y = Y−Hfpr ≈G∆w, (2.9)

The term “prior” model is used somewhat loosely since this is not a Bayesian method. However, fpr serves
a similar function by providing regularization in the inverse problem.

Approach C : The incorporation of the spatial patterns in X into the estimation procedure can be performed
in an alternative manner. We note that w(X) can be used to normalize w. We rewrite Eq. 2.8 as

Y≈G diag(w(X)) diag(w−1
(X))w = G′w′ =

(
H Φ̃ΦΦ

′
R

R Φ̃ΦΦ
′
R ′

)
w′, (2.10)

where w′= {ws,i, j/w(X),s,i, j},{s, i, j}∈W (s), is the normalized set of wavelet coefficients, Φ̃ΦΦ
′
R = Φ̃ΦΦR diag(w(X))

and Φ̃ΦΦ
′
R ′ = Φ̃ΦΦR ′ diag(w(X)).

In all the three cases, we obtain an underdetermined set of linear equations of the form

ϒϒϒ≈ ΓΓΓζζζ. (2.11)

This completes Step B in Fig. 2.4. We outline the solution procedure in Sec. 2.4.3 and compare the perfor-
mance of the three formulations in Sec. 2.5.1.

2.4.3 Solving the inverse problem

Eq. 2.11 is solved using an optimization procedure. Since we obtain our observations from a set of measure-
ment locations that were sited with an eye towards biospheric CO2 fluxes (see Appendix B), it is unlikely
that they will constrain all the elements of ζζζ. Here we fall back on our multiscale model of FR , which
explicitly parametrizes orthogonal spatial patterns (the wavelets) of different scales. Further, only those
patterns that were observed in the X field were retained in W (s). yobs is probably sufficient to estimate the
larger patterns, whereas it may not be possible to constrain the finer details. However, a priori, we do not
know the identity of these “un-constrainable” details.
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In our solution of Eq. 2.11, we will attempt to identify the wavelets coefficients that cannot be estimated
from ϒϒϒ and drive them to zero i.e, the solution method will impose sparsity on ζζζ. This will provide us with a
reconstruction of FR , containing only those features/patterns that are supported by data. The sparse solution
of Eq. 2.11 is performed using Stagewise Orthogonal Matching Pursuit (StOMP, [60]). Eq. 2.11 is recast
similar to Eq. 2.4

minimize
ζζζ∈RN

||ζζζ||1

subject to ||ϒϒϒ−ΓΓΓζζζ||22 < ε2. (2.12)

||ζζζ||1 is minimized by setting as many elements of ζζζ to zero as possible, thus enforcing sparsity. Meanwhile,
the constraint ||ϒϒϒ−ΓΓΓζζζ||2 ensures that the solutions being proposed by the optimization procedure provide a
good reproduction of the observations. While the details of StOMP are in [60], we summarize the algorithm
below.

StOMP operates iteratively via S stages, building up a sequence of approximations ζζζ0,ζζζ1, . . . by removing
detected structure from a sequence of residual vectors r1,r2, . . .. We start with an initial guess ζζζ0 = 0 and
initial residual r0 = ϒϒϒ. The stage counter is initialized s = 1. The algorithm maintains a sequence of
estimates I1, I2, . . . of the locations of non-zeros in ζζζ.

In the lth stage, we obtain a vector of residual correlation

cl = ΓΓΓ
T rl−1

which we consider to be a vector with a few significant non-zeros and the rest containing Gaussian noise
of small magnitude. Based on a threshold calculated from the assumption that cl is mostly i.i.d. Gaussian
noise, we identify a small set Jl of “large” coordinates:

Jl = { j : |cl( j)|> tlσl}

where σl = ||rl||2/
√
|rl|, 2 ≤ tl ≤ 3 and |rl| is the length of the vector rl . The newly detected locations of

non-zeros are added to the running list of the support of ζζζ

Il = Il−1∪ Jl.

We then project ϒϒϒ on the columns of ΓΓΓ contained in the enlarged support. Let ΓΓΓI denote the (KsNs+Mcs)×|I|
matrix constructed with the columns chosen using the index set I. The new approximation ζζζl , with support
Il is given by

(ζζζl)Il =
(
ΓΓΓ

T
Il

ΓΓΓIl

)−1
ΓΓΓ

T
Il

ϒϒϒ

and the updated residual is
rl = ϒϒϒ−ΓΓΓζζζl.

We check a stopping criterion, and proceed to the next iteration after setting := l +1.

This completes Step C in Fig. 2.4.

2.4.4 Enforcing non-negativity of FR

Estimates of w calculated by StOMP do not necessarily provide FR = H Φ̃ΦΦR w that are non-negative. In
practice the negative ffCO2 emissions occur in only a few grid-cells and are usually small in magnitude. A
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large fraction of elements of FR are set to zero by StOMP. Having identified the sparsity pattern, i.e., the
spatial scales that can and cannot be estimated from Y, we devise an iterative procedure for enforcing non-
negativity on FR . We discard FR ′ and manipulate the emissions in R directly, rather than via the wavelet
coefficients.

We seek non-negative ffCO2 emissions E = {Ei}, i = 1 . . .Q,Q = (NR K) such that

||yobs−HE||2
||yobs||2

≤ ε3. (2.13)

E is constructed iteratively through a sequence E1,E2, . . .. E0 is initialized by using the absolute values of
FR calculated by solving Eq. 2.12.

At each iteration m, we seek a correction ξ = {ξi}, i = 1 . . .Q, where |ξi| ≤ 1, such that

E(m) = diag(exp(ξ1),exp(ξ2), . . . ,exp(ξQ))E(m−1)

≈ diag(1+ξ1,1+ξ2, . . . ,1+ξQ)E(m−1)

= E(m−1)+∆E(m−1), where ∆E(m−1) = ξT E(m−1).

Since the emissions must satisfy yobs ≈HE(m), we get

yobs−HE(m−1) = ∆y≈H∆E(m−1) (2.14)

This is an underconstrained problem, and we seek the sparsest set of updates ∆E(m−1) using StOMP.

The corrections are calculated, and the emissions updated as

ξi = sgn

(
∆E(m−1)

i

E(m)
i

)
max

(
1,

∣∣∣∣∣∆E(m−1)
i

E(m)
i

∣∣∣∣∣
)
,

E(m)
i = E(m−1)

i exp(ξi), (2.15)

to obtain E(m).

The convergence requirement Eq. 2.13 is checked with E(m), and if not met, the iteration count is updated
m := m+1 and Eq. 2.14 is solved again. This completes Step D in Fig. 2.4.

To summarize, the solution of the inverse problem proceeds in two steps:

1. Step I – Sparse estimation of FR using the wavelet model: This is performed by StOMP, which
explicitly identifies small scales that cannot be constrained by yobs and drives them to zero. The
estimation of FR is performed by calculating the wavelet coefficients w. We obtain an approximation
to the emissions, FR , which may be negative in certain grid-cells.

2. Step II – Enforcement of non-negativity: Non-negative emissions E are calculated by iteratively
updating |FR | with a multiplicative correction. Updates are performed on fluxes in grid-cells, not the
wavelet coefficients. Each iteration includes an invocation of StOMP.
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2.5 Tests

In this section, we test the multiscale parameterization for ffCO2 emissions, developed in Sec. 2.3, using the
sparse estimation technique in Sec. 2.4.

Generating synthetic observations: The true ffCO2 emissions are obtained, for 2002, from the Vulcan
inventory [3, 4]. Vulcan provides emissions in R and we assume that there are no emissions elsewhere.
Hourly Vulcan fluxes are coarsened from 0.1◦ resolution to 1◦, and averaged to 8-day periods. These fluxes
are multiplied by H to obtain ffCO2 concentrations at Ks = 35 measurement towers (see Appendix B).
Observations are available every 3 hours and span a full year. A measurement error ε ∼ N(0,σ2) is added
to the concentrations to obtain yobs, as used in Eq. 2.8. The same σ is used for all towers and is set to 0.01
ppm (approximately, 1% of the average concentration observed at the 35 towers).

2.5.1 Comparison of optimization formulations

We solve Eq. 2.8 using the StOMP method (Sec. 2.4.3) and enforce non-negativity on FR to obtain E. The
coefficients w(X) used in Eq. 2.9 and Eq. 2.10 are obtained from a wavelet decomposition of fpr based on
nightlights (Sec. 2.3). The constant c in Eq. 2.6 is obtained by using fluxes from the EDGAR inventory [34]
for 2005 i.e., instead of using emissions from Vulcan to calculate fV , we use EDGAR. We thus ensure that
Vulcan is not used in any capacity during the inverse modeling (except to generate the synthetic observa-
tions). The inversion is performed for k = 1 . . .45, for the entire year. The following parameters are used
in the inversion process (Sec. 2.4.3 & 2.4.4): ε2 = 10−5,ε3 = 5.0× 10−4,Mcs = 13,500 i.e., 300 random
projections for each 8-day period.

In Fig. 2.5 we plot the estimated emissions during the 31st 8-day period, as calculated using Approaches
A, B and C. The true emissions are also plotted for reference. Four quadrants are also plotted for easier
comparison and reference. The distribution of towers is very uneven, with most of the towers being con-
centrated in the Northeast quadrant. We see that Approach A (Fig. 2.5, top right) provides estimates that
have large areas in the Northwest (NW) and Southwest (SW) quadrants with low levels of ffCO2 emissions.
In contrast, the true emissions (Fig. 2.5, top left) are mostly empty, which is also borne out by nightlight
and built-up area maps in Fig. 2.3. Thus we see that the minimization of ||ζζζ||1 (alternatively ||w||1) drives
the wavelet coefficients to small values, but not identically to zero. In Fig. 2.5 (bottom left), Approach B
provides estimates that show much structure in the Eastern quadrants, and the patterns seen in nightlights
(Fig. 2.3) are clearly reproduced. The reason is as follows. While fpr captures the broad, coarse scale pat-
terns of ffCO2 emissions, it incurs significant errors at the finer scales. Eq. 2.9 essentially seeks to rectify
these errors. However, as mentioned in Sec. 2.4.2, fine-scale wavelets tend to have large wavelet coefficients
and the minimization of ||ζζζ||1 (alternatively ||∆w||1) removes them since the constraint ||ϒϒϒ−ΓΓΓζζζ||22 < ε2 is
not very sensitive to individual wavelets at the fine scale (they only affect neighboring towers significantly).
The inability to rectify the fine-scale discrepancies lead to a final ffCO2 estimate that resembles fpr in the
finer details. Fig. 2.5 (bottom right) plots the estimates obtained using Approach C, which uses normalized
wavelet coefficients w′. The estimates from Approach C show large areas of little or no emissions in the
Western quadrants, similar to the true emissions in the top left figure. In the Eastern quadrants, the emissions
show less spatial structure than the true emissions as well as those obtained using Approach A.

In Fig. 2.6 (left) we evaluate the accuracy of the reconstruction quantitatively. We total the emissions in R
to obtain the country-level ffCO2 emissions and compare that with the emissions from Vulcan. We plot a
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Figure 2.5: Plots of ffCO2 emissions during the 31st 8-day period. Top left, we plot true emissions from
the Vulcan inventory. Top right, the estimates from Approach A. Bottom left and right figures contain the
estimates obtained from Approaches B and C respectively. Each figure contains the measurement towers as
white diamonds. Each figure is also divided into quadrants. We see that Approach A, unconstrained by fpr

provides low levels of (erroneous) emissions in large swathes of the Western quadrants. Approach B reflects
fpr very strongly. Approach C provides a balance between the influence of fpr and the information in yobs.

time-series of errors defined as a percentage of total, country-level Vulcan emissions

Errork (%) =
100
K

K

∑
k=1

Ek−EV,k

EV,k
, where Ek =

∫
R

Ek dA and EV,k =
∫

R
fV,k dA. (2.16)

Here, fV,k are Vulcan emissions averaged over the kth 8-day period and Ek are the non-negativity enforced
emission estimates in the same time period. A positive error denotes an overestimation by the inverse
problem. In Fig. 2.6 (right) we plot the correlation between the true and reconstructed emissions over the
same duration. This was done by calculating the Pearson correlation coefficient between the vector of grid-
cells covering the United States. It is clear that Approach B provides the worst reconstructions, with the
largest errors and smallest correlations. Approach C tends to over-predict emissions, whereas Approach
B tends to under-predict them, often by approximately the same (small) amount. The correlations of the
reconstructed emissions from these two emissions are about the same.

In Fig 2.7 we see the essential difference between Approach A and C. We plot the reconstruction error
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Figure 2.6: Comparison of estimation error (left) and the correlation between true and estimated emissions
(right) using Approaches A, B and C. It is clear that Approach B is inferior to the others.

(left figure) and correlation between true and reconstructed emissions (right figure) in the Northeast (NE)
and Northwest (NW) quadrants. Errors in the emissions are represented as a percentage of the total (true)
emissions in that quadrant. We see the Approach C has smaller errors in both the quadrants. It also provides
higher correlation in the NW quadrant which does not have many measurement towers (white diamonds
in Fig. 2.5). Thus normalization using w(X) and minimization of ||ζζζ||1 (alternatively ||w′||1) prevents large
departures from fpr and also rectifies the tendency to remove large wavelet coefficients belonging to the
finer wavelets. Approach C therefore provides a formulation that is more accurate and robust at the quadrant
scale. Note, however, that both Approach A and C have similar fidelity at the scale of R .

In the tests below, we will restrict ourselves to Approach C.

2.5.2 Evaluating formulation using compressive sensing metrics

In this section we compare Approach A versus C in terms of certain compressive sensing metrics to explain
the lower accuracy of the estimates developed using Approach A. Note that in Approach A, sparsity is the
sole source of regularization.

As specified in Eq. 2.2, the process of acquiring compressive measurements g′ involves project wavelet
bases ΦΦΦ on the rows of ΨΨΨ. Since the rows ψi,· of ΨΨΨ are random unit vectors, they are neither aligned with
nor orthogonal to the bases φ·, j and consequently the elements of AΨΨΨ = ΨΨΨΦΦΦ tend to assume a distribution
of magnitudes which are generally not very close to 0 or 1. This coherence µ(ΨΨΨ,ΦΦΦ) is defined as [79]

µ(ΨΨΨ,ΦΦΦ) =
√

N max
1≤i, j≤N

|< ψi,·,φ·, j > |, 1≤ µ(ΨΨΨ,ΦΦΦ)≤
√

N (2.17)

Values of µ near 1 (alternative max |< ψi,·,φ·, j > | near 1/
√

N) indicate incoherence between ΨΨΨ and ΦΦΦ and
more efficient sampling. Note that the lower bound assumes that ΨΨΨ is a random matrix.

In compressive sensing, random matrices such as Gaussians, Hadamard, Circulant/Toeplitz or functions such
as noiselets [54, 80, 81, 82] serve as ΨΨΨ. In Fig. 2.8, we plot the distribution of log10(|Ai, j|), the elements
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Figure 2.7: Reconstruction error (left) and correlation between the true and estimated emissions, using
Approaches A and C, for the Northeast (NE) and Northwest (NW) quadrants. We see that Approach C,
which includes information from fpr, leads to lower errors in both the quadrants and better correlations in
the less instrumented NW quadrant.

of AΨΨΨ for some “standard” sampling matrices. ΦΦΦ contains the wavelets used in Sec. 2.5.1 i.e., those se-
lected using nightlights. We see that log10(|Ai, j|) may assume continuous (Gaussian and circulant sampling
matrices) or discrete (Hadamard, scrambled-block Hadamard and Noiselets) distributions, and generally lie
between -3 and -1. The samples collected by these projection schemes are sufficiently informative, due to
the incoherence between ΨΨΨ and ΦΦΦ, to allow reconstruction of the original image with sparsity as the sole
regularization.

In Eq. 2.8, H serves a similar sampling purpose. H is determined by atmospheric transport processes and is
not a random matrix. However, the efficiency of sampling depends on the incoherence between H and ΦΦΦ.
We construct a new H′ by picking the rows of H corresponding to 2 towers and for the 21st and 22nd 8-day
periods. We compute AH′ = H′ΦΦΦ, and in Fig. 2.8, plot the log-transformed magnitudes of the elements of
AH′ . The distributions for the two towers are almost identical. We clearly see that, unlike AΨΨΨ, AH′ contains
a significant number of elements that are close to 1, and a large number of elements which are close to
0 (e.g. near 10−6). This is a consequence of the rows of H′ being approximately aligned to some of the
columns of ΦΦΦ and consequently, nearly orthogonal to others. The small values in AH′ indicate that the
CO2 concentration prediction y at the two selected towers are insensitive to many of the wavelets i.e., to
many scales and locations. In fact, the dominance of near-field CO2 fluxes on tower measurements is well
known [83] and is responsible for the particular structure of AH′ .

Further, the coherence µ(H ′,ΦΦΦ) is larger than µ(ΨΨΨ,ΦΦΦ), indicating that the sampling efficiency of H′ is
inferior to what is generally achieved in compressive sensing. Consequently a combination of sparsity and a
“prior” emission model fpr were required to regularize the problem and enhance the accuracy of the emission
estimates in Approach C.
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Figure 2.8: Comparison of the distribution of the elements of AΨΨΨ and AΦΦΦ. We see that Gaussian and
circulant random matrices lead to continuous distributions whereas Hadamard, scrambled-block Hadamard
(sbHadamard) and noiselets serving as sampling matrices lead to AΨΨΨ where the elements assume discrete
values. In contrast, the elements of AH′ assume values which are spread over a far larger range, some of
which are quite close to 1 while others are very close to zero.

2.5.3 Inversions with nightlights as proxy

In Fig. 2.9, we plot the true and reconstructed emissions for 3 8-day periods (k = 9,33,42). We see that
due to the abundance of measurement towers in the NE quadrant, the reconstruction there is accurate. On
the other hand, the tower density on the West coast is sparse and gives rise to significant inaccuracies. For
example, in 8-day periods 33 and 42, we see that the Los Angeles–San Diego region (Southwest quadrant)
is underestimated, since the only tower is in La Jolla (32.87N, -117.26W). The estimated emissions in the
center of the country (Continental Divide and Great Plains, in the Western quadrants) show some underes-
timation, and far less structure than the true ffCO2 emissions. This is due to the presence of just 3 towers,
which are also clustered in a relatively small region. The region around the Gulf of Mexico is not well
estimated since there are few towers there.

In Fig. 2.10 (left) we plot a time-series of errors defined as a percentage of total, country-level Vulcan
emissions. Percent errors in reconstructed emissions are calculated using Eq. 2.16. The “prior” errors are
computed as

Errorpr,k (%) =
100
K

K

∑
k=1

Epr−EV,k

EV,k
where Epr =

∫
R

fpr dA.

We see 25% errors in fpr. This is a consequence not only of the disagreement between EDGAR (in 2005) and
Vulcan (in 2002), but also the manner in which they account for emissions. Since we are only interested in
obtaining a rough guess of US emissions with fpr, we did not perform a careful analysis and comparison. As
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Figure 2.9: Reconstruction of the ffCO2 emissions from the 35 towers (plotted as diamonds) over one year.
The true emissions are on the left and the reconstructions on the right. We see that the large scale structure of
the emissions have been captured, as seen by the comparisons for 8-day periods number 9 (mid-March), 33
(end of August) and 42 (early November). The west coast of the US has few towers near heavily populated
regions and thus is not very well estimated. In the middle and bottom rows, we see that the emissions in the
Los Angeles-San Diego region (32.87N, -117.26W) is underestimated. On the other hand, due to the higher
density of towers in the Northeast, the true and estimated emissions are qualitatively similar. Emissions have
units of µmol m−2 s−1 of C (not CO2 ).
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Figure 2.10: Comparison of reconstruction error and correlations. Left: We plot the error between the
reconstructed and true (Vulcan) emissions in blue. In red, we plot the error between fpr using nightlights and
Vulcan emissions. We see that assimilation of yobs leads to significantly improved accuracy. Right: We plot
the accuracy of the spatial distribution of the reconstructed emissions. The Pearson correlations C(Ek, fV,k)
and C(fpr, fV,k) show that incorporating yobs improves the spatial agreement of estimated emissions versus
the true one from 0.7 to around 0.9. If the emissions are averaged over 32-day periods, rather than 8-day
periods, the correlation with true (Vulcan) emissions rises even higher.

can be seen, assimilation of yobs reduces the error to a maximum of 4%. The least accurate reconstructions
are during spring. In order to check the accuracy of the spatial distribution of Ek, we calculate the Pearson
correlations C(Ek, fV,k) and C(fpr, fV,k). We see that data assimilation increases the correlation from around
0.7 to 0.85-0.95, with a mean around 0.9. When the emissions are aggregated/averaged over 32-day periods,
the correlation increases to 0.9-0.95, with a mean around 0.93. Thus, the ffCO2 emissions obtained using a
nightlight proxy are substantially improved by the incorporation of yobs.

Next, we address the impact of tower density. As was clear in Fig. 2.9, the reconstruction in the Northeast
(NE) quadrant is more accurate compared to the reconstruction elsewhere. We compute the percent error
between reconstructed and true (Vulcan) emissions on a quadrant basis, and plot them in Fig. 2.11. The
correlation between the reconstructed and Vulcan emissions are plotted too. In Fig. 2.11 (left), we see that
the reconstruction error in the NE quadrant is far smaller than elsewhere. Further, the reconstruction error in
individual quadrants is far higher than in the country as a whole (Fig. 2.10), where the total reconstruction
error never exceeded 4%. Thus, while large scale structures (e.g., at the scale of the US) are being estimated
quite accurately, significant errors are seen when we address regions the size of the individual quadrants.
The consequences of not being able to constrain quadrant-scale structures is seen in Fig. 2.11, where the NE
quadrant displays better correlation with Vulcan than the rest. The most inaccurate spatial patterns are seen
in the Northwest (NW) quadrant that includes the Great Plains and the Continental Divide. Here, the lack
of strong emissions, nightlights and towers make the reconstruction particularly poor.

We now address some of the numerical aspects of the solution. In Fig. 2.12 (left) we plot y predicted by
the reconstructed emissions at 3 towers. We see that the ffCO2 concentrations are well reproduced by the
estimated emissions. Thus, the lack of fidelity at the smaller scales (seen in Fig. 2.11) do not substantially
impact the measurements. In Fig. 2.12 (right) we plot the wavelet coefficients obtained by projecting the
emissions (both the true and reconstructed) on the wavelet bases. The wavelet coefficient values have been
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Figure 2.11: Plot of the error in, and the correlation between reconstructed emissions and true (Vulcan) ones.
Left: We see that the reconstruction error in the NE quadrant is small compared to the others. However,
the error in each of the quadrants is much larger than the error at the country level (see Fig. 2.10). Right:
Correlation in each of the quadrants. The NE quadrant is substantially better than the others due to the
higher density of towers.

subjected to a hyperbolic tangent transformation for ease of plotting. The true wavelet coefficients with a
magnitude above 0.01 are plotted with red symbols. The true (Vulcan) emissions have a large number of
coefficients with small magnitude; these are usually for small-scale features i.e., have coefficient indices
in the right half of the range (Fig. 2.12, right; red symbols). During the sparse reconstruction from sparse
data, these coefficients are set to zero (blue line in Fig. 2.12, right). The coefficients corresponding to the
low-index coefficients, which represent large structures are estimated accurately. This explains the good
correlation between true and estimated emissions at the country scale and a far poorer one at the quadrant
scale (Fig. 2.11). The explicit separation of scales is thus leveraged into ignoring unimportant, fine-scale
details (which are difficult to constrain with data) and focusing model-fitting effort on the scales that can be
resolved by the data. Sparse reconstruction achieves this in an automatic, purely data-driven manner, rather
than via a pre-processing, scale-selection step.

Finally we see the impact of the enforcement of non-negativity. In Fig. 2.13 we plot the cumulative dis-
tribution function (CDF) of the ffCO2 emissions in R before and after the imposition of non-negativity,
as described in Sec. 2.4.4. The emissions are from the 31st 8-day period (depicted in Fig. 2.12). We see
from the CDF that before the imposition of non-negativity, the number of grid-cells with negative emissions
is small; further, the negative emissions are small in magnitude. Thus the sparse reconstruction (Step I in
Sec. 2.4.4) provides a very good approximation to the final estimated fluxes, by detecting the spatial pat-
terns/wavelets that could be constrained by observations. Given a good approximation, the non-negativity
enforcement converges quickly.

2.5.4 Inversions with built-up area maps as proxy

We investigate the effect of built-up area (BUA) maps, instead of images of nightlights, as the proxy. Chang-
ing the proxy results in a different set of wavelets being chosen (nightlights resulted in a W (s) of 1031
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Figure 2.12: Left: Prediction of ffCO2 concentrations at 3 measurement locations, using the true (Vulcan)
and reconstructed emissions (blue lines) over an 8-day period (Period no. 31). Observations occur every
3 hours. We see that the concentrations are accurately reproduced by the estimated emissions. Right:
Projection of the true and estimated emissions on the wavelet bases for the same period. Coarse wavelets
have lower indices, and they progressively get finer with the index number. We see that the true emissions
have a large number of wavelets with small, but not zero, coefficients. In the reconstruction (plotted in blue),
a number of wavelet coefficients are set to very small values (almost zero) by the sparse reconstruction. The
larger scales are estimated accurately.
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Figure 2.13: CDF of emissions in R , before and after the imposition of non-negativity, as described in
Sec. 2.4.4. We see that the CDF of the emissions without non-negativity imposed contains a few grid-cells
with negative fluxes; further, the magnitude of the negative emissions is small. Thus the spatial parameteri-
zation, with sparse reconstruction provides a good approximation of the final, non-negative emissions.

43



wavelets; the corresponding number for BUA was 1049); further one was not a strict subset of the other. It
also results in a different normalization in Eq. 2.10. The inversion was performed in a manner identical to
that in Sec. 2.5.3. In Fig. 2.14 (left) we see that emissions reconstructed from BUA as the proxy are more
variable; however, averaged over the entire 45 8-day periods, the reconstruction errors are not very differ-
ent. In Fig. 2.14 (right), we see that the correlation between estimated and true emissions is better in case
of nightlight-based reconstruction (when performed at a 8-day temporal resolution). However, when aver-
aged to a 32-day temporal resolution, the difference between the two reconstructions (nightlights- versus
BUA-based) is minimal. In Fig. 2.15 we investigate the differences between the nightlight- and BUA-based
reconstructions at the quadrant level. We see in Fig. 2.15 (left) that the difference between nightlight- and
BUA-based reconstruction errors in the NE quadrant are smaller than those for the NW quadrant. Thus,
while the prior emissions from nightlights and BUA are quite different (see the last row of Fig. 2.3), the
estimated emissions are well constrained by yobs in the NE quadrant and the impact of the priors/proxies
is small. This is not the case for the NW quadrant, where not only are the errors high, the two fpr lead to
reconstruction errors of different signs. Thus the region is badly constrained, which is not surprising given
the paucity of towers (see Fig. 2.9). However, on the whole, BUA-based reconstruction is a less accurate
one. In Fig. 2.15 (right) we plot the correlation of the reconstructed and true emissions in the NE and NW
quadrants. We see that the correlations for the nightlight- and BUA-based estimated emissions are some-
what similar, though BUA-based estimation is more variable, and has lower correlation as a whole. Thus,
while Fig 2.3 (middle row) showed that BUA-had a slightly better correlation with true (Vulcan) emissions,
its larger errors, as seen in Fig. 2.3 (bottom row) lead to a less accurate reconstruction. This result is also
a testament to the inadequacy of yobs over the whole country; had there been sufficient data to constrain E,
the impact of fpr would have been minimal.

In Fig. 2.16 we compare the estimated emissions developed from the two competing prior models. In the top
row we plot the estimated emissions for the 34th 8-day period using the nightlight prior (left) and built-up
area maps (right). The difference between the two estimates, plotted in the bottom left subfigure, shows
differences spread over a large area, though their magnitudes are not very big. Thus the “prior” model has a
measurable impact on the spatial distribution of the emissions. Bottom right, we plot the degree to which the
measurements update/change the prior model. On the horizontal axis, we plot the emissions predicted by
the “prior” model, while the vertical axis represents the estimated emission in the corresponding grid-box.
We see some correlation between the “prior” and estimated emission when the emissions are large (more
than 0.25 µmol m−2 s−1 of C).

2.5.5 Impact of Mcs

In Sec. 2.4.2 we had used Mcs random projections of FR ′ to implement a FR ′ = 0 constraint efficiently.
Since Eq. 2.11 is solved approximately, and due to the small number of wavelets in W (s) that span R ′

, the
constraint FR ′ = 0 is not satisfied exactly and FR ′ is usually small. This error varies with Mcs; a larger
number of random projections result in a closer realization of the constraint. However, they are never driven
to zero, primarily because the wavelets used to model FR ′ and FR were chosen using X (and thus may not
form a complete basis set for ffCO2 emissions). Errors in the enforcement of the FR ′ constraint lead to
commensurate errors in FR . In practice, this affects only Step I of the emission estimation procedure, where
a sparse approximation of FR is calculated; thereafter it is used as a guess in Step II, the enforcement of
non-negativity of emissions. However, a good estimate of FR accelerates Step II.

In Fig. 2.17, we plot the impact of Mcs on the reconstruction. We perform Step I of the emission estimation
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Figure 2.14: Left: Plot of the error in the reconstruction, as performed with built-up area maps (blue line)
and nightlights (black line) as the proxies. Right: Correlation between the true and reconstructed emissions,
as performed with built-up area maps and nightlights as the proxies. The nightlights-based reconstruction
has slightly less reconstruction error and better correlation with the true emissions, when compared at 8-
day temporal resolution. When averaged to a 32-day temporal resolution, emissions obtained via the two
methods are very similar.
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Figure 2.15: Left: Emission reconstruction error in the NE (blue) and NW (black) quadrants, when per-
formed with BUA (line) and nightlights (symbols) as proxies. We see that the NW quadrant is very badly
constrained and a change in proxies changes the sign of the error. This is also seen in the NE quadrant;
however, the error magnitudes are far smaller. Right: The comparison of correlations between true and
reconstructed emissions shows similar trends; nightlights-based estimation produces better reconstructions.
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Figure 2.16: Comparison of emission estimates developed using fpr constructed from nightlight radiances
and built-up area maps. Top: Estimated ffCO2 emissions for the 34th 8-day period developed using nightlight
prior (left) and the prior from built-up areas maps (right). Bottom left: we plot the difference between the
two estimates. Bottom right: We plot a scatter plot between the estimated and prior emissions, for the two
prior models.
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Figure 2.17: The impact of the number of compressive samples Mcs on the reconstruction of FR (ηR ) and
FR ′ (ηR ′ ). ηR and ηR ′ are plotted on the Y1 and Y2 axes respectively. Results are plotted for the 31st 8-day
period. We see that Mcs > 103 does not result in an appreciable increase in reconstruction quality. Also,
Mcs < 102 shows a marked degradation in ηR ′ .

procedure (see Sec. 2.4), for the 31st and 32nd 8-day periods and compute the ratios

ηR =
||fk,R ||2
||fV,k||2

and ηR ′ =
||fk,R ′ ||2
||fV,k||2

for k = 31.

Here fk,R and fk,R ′ are the emissions (from Step I) over R and R ′
. fV,k is the true (Vulcan) emission field

during the same period. These ratios are plotted as a function of the log-transformed number of compressive
samples Mcs per 8-day period. We see that 10 projections per 8-day period is too few, leading to around 20%
errors in fk,R ′ (ηR ′ ≈ 0.2). Beyond about 100 projections per 8-day period, ηR ′ oscillates around 0.1. The
corresponding errors in fk,R are about 5% (ηR ≈ 1.05). In our study we used 300 random projections for
each 8-day period. In contrast, had we imposed FR ′ = 0 in all grid cells in R ′

, we would have generated over
3000 constraints per 8-day period (our 64×64 mesh has 4096 grid cells, of which 816 are in R and the rest,
3184 are in R ′

). This economy of computational effort in the imposition of the constraint is only partially
due to the efficiency of random projections; a major simplification is achieved by the lower-dimensional
model of FR using the wavelets identified by X.

2.5.6 Impact of ε

In this section we study the impact of the measurement error ε. The nominal value used in this study is
ε = 10−2; we explore the impact of ε = {2.5,5.0,7.5,10}×10−2. The results, for the 31st 8-day period are
shown in Fig. 2.18. Top left, we plot the true emissions from the Vulcan inventory for reference. Top right,
we plot results using ε = 2.5× 10−2. We see enhanced “blockiness” as some of the finer wavelets cannot
be estimated; whereas the true emissions are represented using 363 wavelets coefficients with a magnitude
above 0.01, the reconstruction with ε = 2.5× 10−2 recovers only 325 such coefficients. Bottom left, at
a higher level of measurement errors (ε = 10−1), the solution seems qualitatively different; low emission
regions in the Western quadrants (Continental Divide and the deserts of the Southwest) show erroneous (and
higher) levels of emissions. This leads to the recovery for 377 wavelet coefficients with a magnitude above
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0.01. Bottom right: we summarize the quality of the reconstruction via the reconstruction error (%) and the
correlation between the true and estimated emissions. We see that the degradation of reconstruction quality
is roughly linear in the measurement error ε.

2.5.7 Impact of the number of observation towers

In this section, we investigate the impact of reducing the number of observation towers. In Fig. 2.19 we
plot the results from inversions performed with 35-, 25- and 15-tower configurations. In the left column,
we plot reconstructed emissions during the 33rd 8-day period, with the different tower configurations. The
resolution at which the emissions can be estimated decreases with the number of towers; the differences
between the 35- and 15-tower reconstructions are easy to detect. In the right column, we quantify the
differences. In Fig. 2.19, top right, we plot the reconstruction error over 45 8-day periods. We see that while
the difference in the reconstruction error between 35- and 25-tower inversions is not much, the 15-tower
inversion is clearly inferior. This is also borne out in the plot of the correlation of the true and estimated
emissions (Fig. 2.19, right middle), where the estimation performed with 15 towers provides the lower
bound. Finally, in Fig. 2.19, bottom right, we plot the wavelet coefficients. The coefficients have been
subjected to a hyperbolic tangent transformation for plotting clarity. The true wavelet coefficients with a
magnitude above 0.01 are plotted with red crosses. The 35-tower reconstruction comes close to estimating
the true coefficients; this is especially true for the wavelets with larger spatial support (i.e., low index).
As the number of towers drop, the errors in the estimated wavelet values grow. Further, the number of
wavelet coefficients with large magnitudes (above 0.01) steadily decreases. Thus while the true emissions
are represented by 363 wavelet coefficients with magnitudes above 0.01, the estimated emissions, using 35,
25 and 15 towers have, respectively, 315, 292 and 287 coefficients. Therefore, in the absence of observations,
the solution to Eq. 2.11 sets the wavelet coefficients to values near zero.

2.6 Conclusions

We have devised a multiresolution parametrization (also known as a multiscale random field or MsRF
model) for modeling ffCO2 emissions at 1◦ resolution. It is based on Haar wavelets, and is designed for
use in atmospheric inversions. It uses easily observable proxies of human activity e.g., images of lights at
night and maps of built-up areas to reduce its dimensionality as well as to build “prior” models of ffCO2
emissions.

The MsRF model was tested in a set of synthetic-data inversions. Time-dependent ffCO2 emission fields
were estimated over the lower 48 states of the US, conditioned on 360 days of observations of time-varying
ffCO2 concentrations at a set of observation towers. In conjunction with an atmospheric transport model, a
sparsity-enforcing optimization method, Stagewise Orthogonal Matching Pursuit (StOMP), was used to fit
MsRF models and reconstruct a time-series of emission fields. It was found that less than half the parameters
of the MsRF model could be estimated from the sparse data; the rest were identified by StOMP and set to
zero. We also identified an efficient way of incorporating a prior model of emissions into the inversion.

The MsRF, being based on wavelets, models emissions on a dyadic square grid, whereas ffCO2 emissions
were restricted to an irregular region R (the lower 48 states of the US). Instead of specifying zero emissions
in the grid-cells outside R , we used concepts from compressive sensing (random projections) to achieve
the same effect, but at a tenth of the computational effort and memory requirements (Sec. 2.5.5). The

48



−120 −110 −100 −90 −80 −70

25

30

35

40

45

50

Longitude

La
tit

ud
e

True emissions in 31st 8−day period [micromoles m−2 s−1]

 

 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

−120 −110 −100 −90 −80 −70

25

30

35

40

45

50

Longitude

La
tit

ud
e

Estimated emissions; measurement error = 0.025000

 

 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

−120 −110 −100 −90 −80 −70

25

30

35

40

45

50

Longitude

La
tit

ud
e

Estimated emissions; measurement error = 0.100000

 

 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.02 0.04 0.06 0.08 0.1
0

5

10

R
ec

on
st

ru
ct

io
n 

er
ro

r;
 %

Measurement Error, ε

Impact of measurement error ε

0.02 0.04 0.06 0.08 0.1
0.6

0.8

1

C
or

re
la

tio
n

Figure 2.18: Impact of measurement error ε. Top left: We plot the true ffCO2 emissions from the Vulcan
inventory. Top right: We plot the estimates calculated using ε = 2.5× 10−2. Bottom left, we plot the
reconstructed emissions using ε = 10−1; we see a clear degradation of the reconstruction. Bottom right: We
plot the reconstruction error (%) and the correlation between the reconstructed and true emissions for various
values of ε; a clear degradation is seen. Reconstruction errors and correlations are plotted on opposing Y-
axes. All results are for the 31st 8-day period.
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Figure 2.19: Left column: Estimated ffCO2 emissions for the 33rd 8-day period. Inversions were done
with 35 (top), 25 (middle) and 15 (bottom) towers. As the number of towers decreases, we see that the
resolution of estimated emissions decreases. Right column: At the top, we plot the error in the reconstructed
emissions for the three tower sets. There is not much difference between reconstructions with 25 and 35
towers, but the 15-tower reconstruction is poor. Right (middle): The correlation between reconstructed and
true emissions shows much the same trend as the reconstruction, with the 15-tower reconstruction having
a far lower correlation over the entire 360-day duration. Right column, bottom: We plot the sparsity of
the estimated wavelet coefficients. We see that as the number of towers decrease, the wavelet coefficient
estimates deviate further from the true values (red crosses).
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emission fields reconstructed using the MsRF were found to contain some regions (grid-cells) with negative
emissions. Using these as a starting guess, we devised a simple method to iteratively impose non-negativity
on the ffCO2 emissions.

Primarily, our work demonstrated that observations of ffCO2 concentrations could be used to update models
of ffCO2 emissions and improve their accuracy (see Fig. 2.10). Further, we assumed that these measurements
could be obtained from existing towers, which were sited with a view of reconstructing biospheric, rather
than ffCO2 , fluxes. This accounts for some of our inability to estimate fine-scale spatial structure in the
emissions. Note that currently the network has expanded beyond the 35 towers included in this work,
and could potentially furnish better estimates of ffCO2 than reported here. Future work will examine how
the inversion method described here could be used to design a monitoring network for ffCO2, rather than
biospheric CO2 fluxes.

The MsRF models constructed using images of nightlights and built-up area maps provided reconstructions
that differed in their fine-scale details (at the quadrant scale and below). This is a reflection of the paucity of
observations and their inability to constrain the fine-scale features of the emission fields. The formulation
also correctly showed that as the number of observation towers were decreased, larger numbers of MsRF
parameters were set to zero and the reconstructed emission fields progressively lost their spatial fidelity,
starting from the fine-scale details.

Our inversion formulation suffers from two drawbacks. It requires measurements of ffCO2 concentrations
at the measurement towers. While these concentrations can be back-calculated using ∆14CO2 or CO mea-
surements, they are less common and more expensive than CO2 concentration measurements. The second
drawback is the deterministic nature of the reconstruction - we do not provide error bounds on the estimates
of the MsRF parameters (the wavelet coefficients). This can be rectified by adopting a Bayesian approach
e.g., Kalman filters, but it is unclear how one would preserve the non-negative property of ffCO2 emissions.
This investigation is currently underway.
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Chapter 3

Estimation of ffCO2 emissions using
ensemble Kalman filters

3.1 Introduction

Many dynamical systems in engineering and science are being instrumented with sensors to help calibrate
and understand uncertainties associated with numerical predictions. For instance, weather and climate pre-
diction rely on a large range of detailed temporal and spatial observations, from stationary pressure and
velocity readings to satellite images. All these data measurements and observations are collected for the
specific purpose of calibrating numerical models so that more accurate forecasts can be issued. At the heart
of that problem lies an inverse problem where the goal is to reconcile the differences between data and
numerical predictions subject to complex dynamics.

Our application focus is on climate science where measurements are used to help characterize global warm-
ing. In particular, atmospheric scientists are measuring the concentration of many trace gases, with CO2
being the most important one, to evaluate the affect of rising temperatures. Emissions from fossil fuel based
sources have caused rapid increases in CO2 concentration in our atmosphere and have been linked to sig-
nificant changes to global climate patterns. In an attempt to mitigate the increase in CO2 levels, a treaty
verification process may eventually be deployed to help manage global inventories and among a range of
technical mechanisms, a measurement-based inversion process could prove to be instrumental in support-
ing such an effort [5]. In contrast to a bottom-up approach [4, 84, 6], where sources are estimated using
socio-economic data, a measurement process minimizes the difference between measurements and numer-
ical predictions by solving an optimization problem in an attempt to reconstruct the source signatures at
some point in time.

Inverting for fossil fuel sources at different spatial scales is a complex endeavor plagued by modeling approx-
imations, data errors, complex source signatures, large computational domains, multi-physics, and limited
measurements. The character of fossil fuel emissions sources, in particular, has complicated features that
pose many inversion challenges. In addition to temporal variations from diurnal and seasonal cycles, source
signatures have a variety of character and spatial distribution at different geographical scales. A view at the
country (e.g., US) spatial scale is considerably different from regional scales in which cities, powerplants,
and roadways can be distinguished. Finally, the biospheric signal can overwhelm the fossil fuel signal de-
pending on location and time; the estimated fluxes reflect the smooth spatial distributions characteristic of
biospheric land-atmosphere exchanges. Previous studies show that the effect of ffCO2 emissions can only
be detected during the dormant (winter) season [2].

In this chapter, we investigate ensemble Kalman Filter (EnKF) algorithms for multi-physics dynamics in
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which different streams of data are available to help calibrate the numerical models. Our goal is to invert
for source terms using sparse data from from different dynamics to eventually provide accurate forecasting
capabilities. In our target inversion problem, the source terms are spread throughout the computational do-
main and as such the solution approach must manage many inversion parameters. In addition, considerable
uncertainty is associated with the transport model and the measurements, which an inversion process must
be able to account for. EnKF is selected as our inversion algorithm to address the uncertainty issues, ensure
scalability to high-dimensional inversions and to allow for non-linearities in the model linking sources and
observations. Furthermore, our intent is to evaluate the statistical quality of the EnKF algorithm for this
problem by comparing with Markov Chain Monte Carlo methods.

The ensemble Kalman filter, first proposed by Evensen in [85] for meteorological applications, uses an
ensemble of states to represent the probability distribution of the model state; when observations are in-
troduced, each member is updated using only the mean and covariance of the predicted distribution. The
method has become popular in the meteorological and hydrological communities, as well as for oil reservoir
simulation, as an alternative to adjoint or four-dimensional variational (4DVAR) methods for handling large
state spaces and error evolution through nonlinear models. EnKF requires no derivation of adjoint equations
or tangent linear operators, and is relatively simple to implement [86].

EnKF have primarily been employed in the estimation of biospheric CO2 fluxes. Since CO2 concentration
observations are a consequence of emissions in the recent past, the data assimilation procedure is a smooth-
ing operation. In [87] Bruhwiler et al. developed a Kalman smoother to reconstruct CO2 fluxes over a 5
year duration at monthly resolution. The formulation was a conventional Bayesian one with informative
priors. A version with less informative priors was developed by Michalak [88]. Scalable approaches based
on ensemble methods have been constructed. In [43] Peters et al. developed an Ensemble Square Root Fil-
ter (EnSRF) to estimate CO2 fluxes at a weekly resolution over a year. They introduced an exponentially
decaying correlation function model for the forecast covariance. Tests with synthetic data simulating obser-
vations at the NOAAA/CMDL sites and a few flights were performed with 200–1500 ensemble members;
runs generally took 50–100 processors. In [23], Feng et al. constructed an ensemble transform Kalman fil-
ter for the assimilation of (synthetic) satellite retrievals. The method was used to infer regional fluxes (at
1000km×1000km resolution and 8-day periods. The state vector spanned 96 days, and observations over a
7-month period was assimilated. A related construction, based on a Maximum Likelihood Ensemble Filter
(MLEF) is described in [89], is more general than the ensemble techniques described, being able to address
non-Gaussian prior distribution.

Current methods for estimating atmosphere-land exchanges e.g., estimating biospheric CO2 fluxes [9] use
an atmospheric transport model which uses wind fields as an input. These wind fields are generally re-
analysis products, constructed by assimilating measurements into meteorological models. The uncertainties
in the re-analysis products, though calculated during the data assimilation process, are not used in the atmo-
spheric transport models; when used in estimating atmosphere-land exchanges, this leads, at the very least,
to an underestimation of the uncertainty in flux estimates. Further, EnKF assume that all distributions are
Gaussians, which within the context of nonlinear models, is not correct. In this chapter, we explore the two
methodological issues associated with the current approach for estimating fluxes: (1) the underestimation
of flux uncertainties due to the convention of using a deterministic wind field and ignoring the uncertainties
in it and (2) the impact of a Gaussian assumption on the second-order moments of the flux distributions
calculated by an EnKF-based inversion. We will address the first by performing a joint inversion for the
velocity field and ffCO2 sources and comparing with the conventional approach. The second issue will be
studied by performing the inversion using a MCMC method.

The remainder of this paper will describe the mathematical formulation of our inversion techniques, present

54



a simple parameterization, and demonstrate the effectiveness of our simultaneous inversion approach using
the EnKF algorithm, in addition to comparing the statistics to MCMC generated values.

3.2 Mathematical Formulation

In this section, we derive the EnKF algorithm from Bayes Theorem. It will provide a mathematical expo-
sition from which we can identify key aspects of the algorithm and draw connections to other methods. In
particular, we evaluate the inversion results from EnKF by sampling the posterior density with a Markov
Chain Monte Carlo (MCMC) method. Furthermore, the quality of simultaneous inversions is compared to
explicit inversion streams where a mean solution from one inversion is used in the forward simulation of the
second inversion process.

3.2.1 Bayesian Inference Review

Bayesian inference is a flexible and statistically rigorous way to model parameters and states. The inference
problem is usually formulated to statistically estimate parameters or inputs to a model, based on noisy
observations of the model output. The process of propagating error through a model is referred to as the
forward problem and can be defined as

d(x, t)≈ G(x, t;m) (3.1)

where m is a set of model parameters, d is a vector of observable output quantities, x is position, t is time, and
G is potentially a nonlinear function of x and t, parameterized by m. The model parameters m are unknown
and need to be estimated from noisy measurements of d. To handle the observation uncertainty, both d and
m will be modeled as random variables in a proper probability space.

To estimate the parameter, we invoke Bayes’ rule to condition the model parameters on d:

f (m|d) = f (d|m) f (m)∫
f (d|m) f (m)dm

(3.2)

where f (m) is the prior density of m, which represents previously held degrees of belief about m. This
information could come from physical meanings of the model parameters or simply expert opinion. In a
Bayesian setting, as opposed to the frequentist paradigm, probabilities represent degrees of belief that the
model parameters will take particular values. An informative prior acts as a regularization term as well,
allowing for the solution of ill posed and underdetermined problems. While the prior distribution represents
previously held beliefs about model parameters, the likelihood function, f (d|m) measures how well a par-
ticular set of model parameters match the available measurements. By using both the prior distribution and
likelihood function, Bayes rule updates previously held beliefs with the current measurements in d. In a
static problem, only one update will be used because all information is presented at once. However, Bayes
rule can also be used iteratively to update the densities as each new measurement arrives. Thus, the posterior
at time t becomes the prior for an update at time t +δt.

Simplifying Bayes rule by disregarding the normalization constant gives:

f (m|d) ∝ f (d|m) f (m) (3.3)
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A major challenge of using Bayes’ rule for inferences is sampling from the posterior density p(m|d). The
posterior evaluations require a computationally expensive forward simulation to compute the likelihood
function, making methods such as Markov chain Monte Carlo (MCMC, [90]) methods difficult to apply.
MCMC methods use a random walk to construct a Markov chain with a stationary distribution equal to
f (m|d). These methods are guaranteed to converge to f (m|d) in the limit of infinite samples and can
therefore capture highly non-Gaussian and multimodal distributions. However, constraints on computation
time often do not allow users to run MCMC methods for many samples. Significant research has been
devoted to variants of the MCMC algorithms in an attempt to accelerate the convergence [91, 92, 93].
However, the sequential nature of this random walk algorithm poses computational challenges that currently
prevents consideration of inverting large numbers of parameters constrained by complex dynamics.

In Bayes rule, the likelihood function is equivalent to a probabilistic description of the measurement errors.
If Gaussian noise is assumed as in (also assumes i.i.d.):

d = G+η (3.4)

where η∼ N(0,σ2), the likelihood function can be represented as a Gaussian function:

f (d|m)∼∏
i

1√
2πσ2

exp
(
−(Gi−di)

2

2σ2

)
(3.5)

and provides one of the components of the mathematical foundation to consider less statistically robust but
computationally more efficient methods such as the Kalman filter [94, 95]. This algorithm recursively av-
erages, in a weighted fashion, a prediction of a system’s state with new measurements and represents the
uncertainty associated with the predictions of the systems state. Gaussianity is assumed and the dynamics
must be linear. To address the nonlinearities in G, the extended Kalman Filter (EKF, [96]) makes use of Tay-
lor’s series to linearize the system. Both algorithms however require an adjoint of the system’s Jacobian to
calculate the covariance. This can be difficult to implement and simply not tractable in complex simulators.
The Ensemble Kalman Filter, on the other hand, does not depend on any linearizations or adjoint calcula-
tions. In addition it can capture some nonlinear behavior in the model G because the covariance is based
on post-processing the ensemble members which depend entirely on the dynamics. The following sections
provides a mathematical formulation starting from Bayes Theory to help compare solution strategies using
MCMC and EnKF solvers.

3.2.2 Comparison Formulation

MCMC and EnKF handle data in fundamentally different ways, necessitating an appropriate inference prob-
lem that can be formulated as a dynamic data assimilation problem for the EnKF and a batch assimilation
(static) inference problem for the MCMC. Consider the general dynamical system

∂s(x, t)
∂t

= G(s(x, t),m(x)) (3.6)

where s(x, t) is the system state, G is a potentially nonlinear model operator parameterized by the model
parameters m. Although appropriate boundary and initial conditions also exist, these are not explicitly
stated for conciseness. In addition to the dynamical system, measurements of the system are available
through some linear functional M:

M[s,m] = d + ε (3.7)
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where ε represents additive measurement noise. The goal here is to obtain probabilistic estimates of the
model parameters m(x) using the observations of the measurements d + ε. Formulating this inference prob-
lem in a Bayesian framework gives the posterior density:

f (m|d) ∝ f (m) f (d|m) (3.8)

(Note that spatial and temporal dependencies have been dropped here to simplify notation.) The EnKF is
generally used to estimate the system state in addition to the model parameters, according to

f (s,m|d) ∝ f (s,m) f (d|s,m) (3.9)

However, attempting to estimate the state and model parameters simultaneously is intractable for MCMC
on most applications due to large state dimensions on fine resolution grids. Thus, the formulation in Eq. 3.8
will be used for comparison.

The measurements in d will generally become available at several discrete times {t0, t1, ..., tk}, k > 0. Denote
these measurements as d = {d0,d1, ...,dk}. MCMC will handle all of these observations at once with batch
processing, and will use Eq. 3.8 directly. The EnKF on the other hand, will assimilate the data sequentially,
updating the estimate of m after each observation. This requires the likelihoods and posterior density in
Eq. 3.8 to be expanded in time.

For both MCMC and the EnKF, measurements are assumed to be uncorrelated in time, and model integration
is assumed Markov, implying that given the state and model parameters at time ti, the model state at ti +δt
is completely determined. No information from t < ti is necessary. With this assumption, applying Bayes’
rule to all available data gives the joint posterior density for the model parameters:

f (m|d) ∝ f (m)
k

∏
j=1

f (d j|m) (3.10)

3.2.3 Sequential Processing

The static description in Eq. 3.10 gives the joint posterior density after all data have been accumulated. This
expression can be used in a MCMC sampling of the posterior; however, the additional sequential structure
of the posterior can also be exploited to sequentially update the posterior as in EnKF. At the first time step,
the intermediate density will be

f (m|d1) ∝ f (m) f (d1|m) (3.11)

and then at the second time step,
f (m|d1,d2) ∝ f (m|d1) f (d2|m) (3.12)

In general, the intermediate density for the first j measurements is given by

f (m|d1,d2, ...,d j) ∝ f (m|d j−1) f (d j|m) (3.13)

This recursive update of the posterior can continue until all observations have been processed, resulting in
the posterior described by Eq. 3.10. The EnKF uses this formulation with a variance minimizing update of
ensemble locations to efficiently approximate the full posterior.
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Figure 3.1: Comparison of MCMC and EnKF approach to estimating the posterior density in Eq. 3.10. Note
the potential for parallelism in the EnKF.

3.2.4 Kalman Filter

The EnKF approach depends on fundamental components from the original Kalman Filter algorithm which
is described next. Consider a simple case where the operator G is linear and both the error model and
prior distribution are Gaussian. The standard Kalman filter fully captures the posterior statistics, which
consequently will also be Gaussian. After temporal discretization, this linear system becomes:

st
k = Gst

k−1 +qk−1 (3.14)

where k is the index in time, the superscript t denotes that this is the true system state, and q is the error in
the model dynamics. First, consider a time-step when no observations are present. In this case, the model
dynamics provide the best estimate of the state at the next time step. The prediction, s f (tk), is then given by:

s f
k = Gsa

k−1 (3.15)

where sa is the best estimate from the previous time-step For time steps without observations, s f = sa = E[s].
Thus, the Kalman filter simply integrates the mean in time to obtain the predictions. The covariance can be
propagated forward by first subtracting the best numerical estimate from the unknown true field:

st
k− s f

k = Gst
k−1 +qk−1−Gsa(tk−1)

= G
(
st

k−1− sa
k−1
)
+qk−1 (3.16)

This is the model forecast error at time tk when no new observations have occurred. Now, the model error
covariance becomes

C f
ss =

(
st

k− s f
k

)(
st

k− s f
k

)T
= GCa

ss(tk−1)GT +Cqq(tk−1) (3.17)

where the model state has error covariance

Ca
ss(tk−1) =

(
st

k−1− sa
k−1

)(
st

k−1− sa
k−1

)T
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and model error covariance is
Cqq(tk−1) = qk−1qT

k−1

In most cases, the model G is not linear and variants of the standard Kalman filter need to be used. A popular
alternative is the extended Kalman filter (EKF, [96]) which simply linearizes the nonlinear operator with a
Taylor expansion around the mean, sa

k−1.

The best estimate from the EKF is also computed by integrating the mean forward in time,

s f
k = G(sa

k−1) (3.18)

Not surprisingly, nonlinearities in G can cause this estimate to be biased, as thoroughly discussed in [97].
The EKF covariance update step follows the usual approach when extending linear methods to nonlinear
cases and uses a truncated Taylor expansion of G, to arrive at the approximate covariance update:

C f
ss ≈ G′k−1Ca

ss(tk−1)G′
T
k−1 +Cqq(tk−1) (3.19)

where G′k−1 is the Jacobian matrix at the previous time step.

The Kalman filter and EKF updates shown above are used when no data are available. When data are
available, the sequential Bayes’ formulation in Eq. 3.12 is used in addition to the model dynamics to update
the mean and covariance. The “best” estimate in this case is the maximum a posteriori (MAP) estimate,
obtained by maximizing the log posterior distribution in Eq. 3.12.

With a Gaussian error model and a continuous state, Bayes’ rule gives the posterior distribution of the model
parameters and system state when observations are present:

f (s,m|d) ∝ f (s|m) f (d|s,m)

= exp
[
−1

2

∫∫ (
s f (x1)− s(x1)

)
W f

ss(x1,x2)
(
s f (x2)− s(x2)

)
dx1dx2

−1
2
(d−M[s])Wεε (d−M[s])

]
(3.20)

where M is a linear measurement functional relating the field s to d, Wss is the functional inverse of the
covariance function, and Wεε = C−1

εε is the inverse of the error covariance. Here, s f is the system state
integrated forward from the previous time-step as if no observations were present. The first term in the
exponential is the Gaussian prior and the second term is the likelihood. In a discretized system where
the likelihood is a multivariate Gaussian distribution and not a Gaussian process, the integrals would be
unnecessary and Wss(x1,x2) would be replaced by the matrix Wss = C−1

ss . The integration simply replaces
the summation that occurs when pre and post multiplying Wss by vectors of discretized states. From this
posterior distribution, it is clear that when data are available, the best estimate of s occurs at the maximum
of this density. This is the MAP estimate for s.

To find the MAP estimate, it is generally easier to minimize the negative log posterior

−2log[ f (ψ,m|d)] =
∫∫ (

ψ
f (x1)−ψ(x1)

)
W f

ψψ(x1,x2)
(
ψ

f (x2)−ψ(x2)
)

dx1dx2

+(d−M[ψ])Wεε (d−M[ψ]) (3.21)
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than to operate on the posterior directly. In [98] a variational derivative and the Euler-Lagrange equation
approach was used to minimize this functional and find the data assimilation update step. The result is:

sa = s f +K
(
d−Ms f ) (3.22)

where the Kalman gain matrix K is defined as:

K =C f
ssM

T (MCF
ssM

T +Cεε

)−1
(3.23)

where Cεε is the covariance of the error term ε and C f
ss is:

C f
ss = GCa

ss(tk−1)GT +Cqq(tk−1). (3.24)

Note that s f and sa are two estimates for the same time step, the former is the estimate before data assim-
ilation and the latter is the analyzed estimate that includes observations. It is the covariance of the model
error that differentiates the EnKF from the standard Kalman Filter, which requires the transpose (or the ad-
joint operator) of G and is not always easily implemented, especially in parallel code. The EnKF approach
calculates this covariance by post-processing a collection (the ensemble) of forward runs per time-step.

3.2.5 Ensemble Kalman Filter

In addition to the adjoint implementation and the errors that arise when using a truncated Taylor expansion
as an approximation to a nonlinear function, the standard Kalman filter algorithms also have to store a
potentially large covariance matrix. Many realistic problems, especially in geophysics, have millions of
degrees of freedom, making it impossible to store the covariance matrix required by the KF and EKF. The
ensemble Kalman filter (EnKF) resolves two of the major issues with the KF and EKF – it does not need
to store the covariance matrix and no linearization of the model operator is required. Instead, the EnKF
uses ensemble averaging to compute the mean and covariance after each update. Randomly instantiated
ensemble members are propagated between observation times with the deterministic model G. Using the
ensemble members as Monte Carlo samples of the model parameters, m, and system states, s, the ensemble
mean and covariance are used instead of propagating the mean and covariance directly. Data assimilation
is similar to the Kalman filter, except each of the ensemble members is updated individual by replacing
the mean and covariance in Eq. 3.22 with ensemble equivalents. The ensemble mean is chosen as the best
estimate although it may be biased. Thus,

s f
k = sk =

1
Ne

Ne

∑
j=1

s j,k =
1

Ne

Ne

∑
j=1

G(s j,k−1) (3.25)

where the subscript s j denotes the jth ensemble member, and Ne is the ensemble size. Now, defining the
ensemble error covariances as:

(Ce
ss)

f =
(

s f − s f
)(

s f − s f
)T

(Ce
ss)

a =
(
sa− sa

)(
sa− sa

)T (3.26)

where the ensemble average defined by · is defined in Eq. 3.25. To incorporate observations, ensemble
members are individually updated according to the KF assimilation step:

sa
j = s f

j +(Ce
ss)

f MT
(

M (Ce
ss)

f MT +Ce
εε

)−1(
d−Ms f

j

)
. (3.27)
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By using the mean and covariances in this way, the ensemble Kalman filter assumes the system state and pa-
rameters have a Gaussian PDF; however, ensemble members are individually propagated through the model
G and can therefore capture some of the model nonlinearity. By using the KF update during assimilation,
the EnKF maximizes a Gaussian posterior for the update step. For a highly nonlinear G, this may not be a
sufficient approximation. In problems with bimodal or highly skewed distribution, EnKF may not be able to
capture all nonlinearities and non-Gaussian statistics.

3.3 Overview of the Physics and Numerical Setup

In this section, we describe the physical problem, and models which will be used in our exploration of
multiphysics systems, the handling of different data streams and the comparison of EnKF and MCMC.
We also discuss practical issues of estimating ffCO2 sources e.g., imposing non-negativity in concentration
and source-magnitude estimates and developing a low-dimensional representation of the target inversion
parameters.

3.3.1 Problem setup

We consider a square domain with dimensions L× L containing the US, Canada and Mexico (Fig. 3.2).
Our numerical experiments use synthetic data which are generated by driving a convection-diffusion system
(Eq. 3.29) with source terms f that in turn are generated from the Vulcan inventory [3, 4]).

∂c
∂t
−D∆c+ v∇c = f ∈Ω (3.28)

c = 0 on Γ (3.29)

where c is concentration, D represents the diffusion coefficient,and v is velocity. The computational and
boundaries are represented by Ω and Γ, respectively. The Vulcan map represents anthropogenicCO2 sources
calculated from socio-economic data and we assume this to be the “truth” model. We introduce a simple
Gaussian kernel (GK) parameterization for these source terms and magnitudes of each kernel are our in-
version targets. This parameterization reduces the variables being inferred far below the grid resolution.
The Vulcan-based image is thresholded to provide a binary image discriminating regions with significant
night lights versus background. For each contiguous region with significant night lights, a single ellipse is
fit to the pixels exceeding the threshold using the Matlab regionprops function (in the Image Processing
Toolbox). The orientation (θ), major and minor radii (r1 and r2) and the centroid coordinates of the ellipse
are recorded. The centroid coordinates define the mean of the Gaussian function, µ = (x0,y0)

The geometric description of the ellipse is used to define the covariance matrix, Σ, of the GK where the
major and minor radii define the ± 2 standard deviations of the kernel. This conversion is done through
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calculation of geometric relationships with the inverse of the covariance matrix:

Σ
−1
xx =

cos(θ)2

r2
1

+
sin(θ)2

r2
2

, (3.30)

Σ
−1
yy =

sin(θ)2

r2
1

+
cos(θ)2

r2
2

, (3.31)

Σ
−1
xy = sin(θ)cos(θ)

(
1
r2

1
− 1

r2
2

)
. (3.32)

Each GK is calculated as a bivariate Gaussian function:

f (x,µ,Σ) =
1√

(2π)2|Σ|
exp
(
−1

2
(x−µ)Σ−1(x−µ)′

)
(3.33)

and ranked using the integrated light intensity weighted by the local values of the Gaussian function. The
GK parameterization is also applied to a satellite image of North America at night [33, 69], which is used
as the initial guess in our inversion process.

A velocity field is set up by imposing a horizontal velocity ul(x) on the top boundary (henceforth the lid
velocity), whereas the rest of the walls of R ∗ act as no-slip boundaries. This induces a vortical flow inside
R ∗ , which is modeled using the unsteady, 2D Navier-Stokes equations (Eq. 3.34):

∂v
∂t

+ v ·∇v = −∇p+µ∇
2v+ f ∈Ω

∇ · v = 0 ∈Ω

v = 0 on Γ1

v = ζ on Γ2 (3.34)

where p is pressure, µ is viscosity, f the body force (set to zero for our tests), and ζ is a prescribed velocity
on a boundary. The equation is solved on a square grid with a resolution (per side) ranging between 60 and
400. For the inversion tests, we generated synthetic observations by simulating at a finer resolution (600 grid
cells per side) and collect sparse set of measurements on a square grid of sensors. I. I. D Gaussian noise is
then added to the data. The magnitude of the noise depends on the variable concerned (concentration versus
velocity), but the standard deviation of the noise distribution varies between 10−3 to 10−2.

3.3.2 Inverse modeling and dimensionality reduction

In the EnKF inversion, the state vector includes both dynamic states and static parameters as specified in
Eq. 3.35.

ψψψ =


u, horizontal velocity at vertical cell interfaces
v, vertical velocity at horizontal cell interfaces
c, concentrations cell centers
b, horizontal velocities at lid
f , sources (amplitudes)

 (3.35)
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For the initial ensemble, velocity fields were generated using a point vortex placed in a random location
the center of the domain. Initial concentration fields were constant, with their level drawn from a uniform
distribution not quite centered around the true initial concentration. Initial boundary velocities at the lid were
described as parabolas centered at the center of the edge, with coefficients drawn from uniform distributions.
Initial source amplitudes were each drawn independently from a half-normal distribution.

The velocities are first advanced forward to the next time when observations are made, whether they be of
concentrations or velocity, or both. The velocity fields at increments in between are stored and passed to
the convection-diffusion equation solver to advance the concentrations forward as well. The measurement
matrix is recalculated each time data is available, depending on its nature, and the entire state vector ψψψ

is updated. The model used to propagate the ensemble solved for the lid-cavity flow at a lower spatial
resolution using the predicted lid velocities at the lid. The peak of the GK i.e., its amplitude, was left as an
unknown to be inferred and included in the EnKF state vector; see Eq. 3.35. This reduced the number of
unknown sources significantly; the number of GKs used in the inversion are mentioned in the individual test
cases. Images of nightlights provide the prior information on spatial patterns of ffCO2 emissions.

In the EnKF inversions studies included in this chapter, we will assimilate both velocities and CO2 obser-
vations. While the assimilation of velocity provides a multivariate Gaussian distribution (realized as an
ensemble of velocity fields) for the reconstructed (a.k.a. re-analyzed) velocity field, only its mean will be
used in the convection-diffusion system for the transport of CO2 emissions. This is no different from the
manner in which inversions are performed today, by neglecting the uncertainty in the re-analyzed velocity
fields. However, the impact of the Gaussian assumption in EnKF will be quantified by comparing against an
inversion using a MCMC method.

3.3.3 Enforcing non-negativity in EnKF

For nonlinear models, the EnKF can create nonphysical ensemble members during the update step. The
simplest way to address these nonphysical values is to simply truncate them to the nearest acceptable value.
Phale et al. [99] discusses three alternative methods in the context of estimating the properties of a hydrocar-
bon reservoir, the simplest of which involves assimilating violated constraints as perfect observations. [100]
also encountered nonphysical values in using the EnKF with a nonlinear convection-diffusion-reaction fire
propagation model, and proposed including a regularization term penalizing large gradients by incorporating
the regularization term as an artificial observation in the EnKF update step. [101] addresses non-physical
values near the displacement front of an immiscible flow through a change in parameterization. Phale’s
method of constraint assimilation was implemented, but found to take up to four times as long to run as ig-
noring constraints, and did not necessarily produce better RMSE than the simple truncation method. Thus,
negative values of concentration and amplitude parameters were truncated after each round of data assimi-
lation.

Since the update step of EnKF uses only the mean and variance of the distribution, it may not correctly
update the distribution conditional on the new data. To obtain a “correct” distribution, we used MCMC; for
the sake of time, we examined a lower-resolution case with fewer GKs.
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3.4 Numerical Results

In this section, we investigate the ramifications of the modeling choices made when using EnKF. First,
we investigate the impact of the prior, which in our case is an informative one. We solve the inversion
problem i.e., we reconstruct the ffCO2 concentration field using the prior sources without assimilating in
ffCO2 concentrations, while using the true velocity field. Secondly, we investigate the impact of introducing
nonlinearities by inferring velocities and ffCO2 concentrations. Whereas in the first case (when we use the
true velocity field) one has a linear problem, the second test involves solving the nonlinear Navier-Stokes
model. Finally we investigate the impact of Gaussian assumptions by comparing EnKF inferences with
those obtained using MCMC.

3.4.1 Inversions with EnKF

We perform an EnKF inversion on a 200×200 grid with ffCO2 sources modeled with 1000 GKs. A 15×15
grid of concentration sensors are used (see Fig. 3.3). We first perform a run without data assimilation.
Fig. 3.2 (top row) plots the inferred and true ffCO2 concentration field, while the bottom row contains
results for the sources. The true velocity field was used. We see that the prior is not very informative;
the reconstructed ffCO2 concentration and source fields bear little resemblance to the true solution if no
observations are used to update them. Fig. 3.3 shows the impact of assimilating data (the 15× 15 grid
of concentration sensors is also shown). Data assimilation reduced the RMSE of the concentration field
by over 55%. However, the RMSE of the source field actually increased after data assimilation. This is
due to the Vulcan-derived source map having very small, concentrated sources, while the Gaussian kernel
approximations are larger and vary smoothly within each ellipse. Qualitatively, in the reconstruction the
cluster of sources along the northeast coast and the amplitudes of the larger Gaussian kernels located in
Canada, which does not appear in the Vulcan-derived (truth-data) source map, are diminished.

Next, we introduce nonlinearities into the inversion. We assimilate both velocity and concentration mea-
surements, using the Navier-Stokes equation to reconstruct the velocity field. These are plotted in Fig. 3.4.
The EnKF performed similarly to the case when the velocity field was known, reducing the RMSE of the
predicted final concentration field by about 55% from that predicted by the initial ensemble. In addition, the
RMSE of the predicted final velocity fields and boundary velocities were reduced by about 75% and 65%,
respectively.

Consistent with [102], it was found that assimilating data more frequently did not necessarily improve the
final prediction. It was also noted that having a smaller measurement error sometimes worsened the final
prediction, perhaps because this reduced the spread of the ensemble excessively after a few assimilation’s
while also causing the algorithm to try to match the observed (and not quite true) data too closely. This can
be seen in the example in [94] where a very small measurement error led to a very erroneous prediction of
a constant truth value.

3.4.2 EnKF vs MCMC

EnKF uses a Gaussian update step and although the post-precessing of the ensembles introduce nonlinear
effects from the dynamics, it is not clear how accurate the final statistics are. We therefore compare EnKF
results to those from a delayed-rejection adaptive Metropolis (DRAM, [91]) MCMC run on a 60×60 grid
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Figure 3.2: Plots of inferred (left) and true (right) ffCO2 concentrations (top row) and ffCO2 sources (bottom
row) using no observations. The true velocity field was used. We see that the prior is not very informative.

with 10 GK (largest 10 of the 60 originally generated), in the case where the true velocity field is known.
We used a single chain of 401400 forward simulations, with a burn-in time of 20,000 samples, and adapting
every 1000 steps. The same measurement noise, sensors (8× 8), initial concentration, velocity fields, and
prior parameter distributions were used for both the EnKF and MCMC runs. It should be noted that MCMC
is computationally intensive, forcing the use of small datasets and a small number of GKs. The coarseness
of this dataset severely limits our ability to resolve velocity and concentration dynamics and this also places
some uncertainty on the overall conclusions of the MCMC comparison. Nevertheless, the results of this
comparison seem in line with our intuition and can therefore be used to guide the robustness of the EnKF
results.

Fig. 3.5 presents the EnKF versus MCMC comparison for concentration. Qualitatively the mean solutions
are very similar, although they both are not accurate in comparison to the truth model, which can be ex-
plained by the limited grid resolution and the small number of GKs. Similar conclusions can be drawn from
the comparison of the GK magnitudes (Fig. 3.6).

Our goal is to assess the statistical quality of the EnKF results and potentially determine the appropriate
adjustment factor. We are ultimately interested in an accurate mean solution and a measure of the certainty
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Figure 3.3: Plots of inferred (left) and true (right) ffCO2 concentrations (top row) and ffCO2 sources (bottom
row) using ffCO2 concentration observations collected on a 15×15 sensor grid. The true velocity field was
used. We see an immense improvement in the inferred ffCO2 concentration field, and a more informative
source inversion.

of the solutions, which can be extracted from the trace of the covariance matrix. Fig 3.7 shows the mean
solution for different GK amplitude values, for EnKF and MCMC. As expected the mean solution is accurate
and well within an acceptable quality range.

However, Fig 3.8 shows considerable differences between the variance calculations. The EnKF overesti-
mates the standard deviation which is a result of the limited interrogation of the overall stochastic space
combined with the effects of the Gaussian update step. Given the range of the difference, it is not clear if an
adjustment factor is possible.

Fig 3.9 shows the difference between EnKF and MCMC covariances. As discussed the diagonal of the
covariance shows a difference which is a measure of the certainty of the solutions. In this case, EnKF
suggests a higher level of uncertainty of the solution.
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Figure 3.4: Plots of inferred and true concentration fields (top row) and ffCO2 sources (bottom row) when
assimilating velocity and concentration measurements.

3.5 Conclusions

In this chapter, we have developed a random field model, based on Gaussian kernels, for the representation
of ffCO2 emissions. This representation is better suited for representing very localized emission fields e.g.,
the ones observed in the Midwest and the Great Plains. In such a case, a wavelet-based representation
may provide a very compact representation only if the emissions are aligned along wavelet boundaries;
otherwise, it is likely that GK provide a lower-dimensional approximation for the emissions. Further, the
elliptical cross-section of the kernels allow some adaptation to the amorphous shape of most population
centers, while the Gaussian shape allows approximation to the urban dome of ffCO2 emissions.

We demonstrated the GK random field in a synthetic data inversion using EnKF. Comparing Figs. 3.2 and
Fig. 3.3, it is clear that the limited observations of CO2 concentrations significantly assist in the reconstruc-
tion of the concentration field, and to a large extent, also constrain the source/emission field. The joint
inference of velocity and concentration fields (using velocity and concentration observations) do not yield
much of an improvement over the true-velocity field inversion (compare Fig. 3.3 versus Fig. 3.4 with re-
spect to the reconstructed emission and concentration fields), indicating, as expected, that the errors in the
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Figure 3.5: Final concentration fields, reconstructed using limited CO2 measurements. The true velocity
field is used. The MCMC reconstruction is on the left and EnKF on the right. The true solution is in the
middle.
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Figure 3.6: Reconstruction of sources using the truth velocity. The MCMC reconstruction is on the left and
the EnKF on the right. The true solution is in the middle.

reconstructed velocity are overwhelmed by the reconstruction error in CO2 concentrations.

The comparison of EnKF versus MCMC do not provide a clear measure of the drawbacks of using EnKF
in the estimation of ffCO2 emissions. In the GK parameterization, the estimates of the GK amplitudes
(means of the distributions) are very close, regardless of whether MCMC or EnKF was used. However, the
estimates of the variances are very different, with EnKF over-estimating the variance in the inferred values
of the GK amplitudes. The lack of variance in the MCMC solution could be because of the lack of samples
(less than 500,000 samples drawn from a 10-dimensional parameter space) or to numerical difficulties in
the EnKF (over-inflating the covariance after the data-assimilation step). The posterior, as reconstructed by
the MCMC, was Gaussian, and in the limit of a correct reconstruction, the MCMC and EnKF results should
have agreed. The good agreement in means, and a worse one in variances, indicate that the true distribution
is symmetric. The root cause behind the differences in variance is thus numerical rather than in the model
or the choice of algorithm.
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Figure 3.7: Plot of the mean of posterior distribution of the amplitudes of 10 GK, inferred using the true
velocity. There is not much difference between the means calculated with MCMC versus EnKF.
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and EnKF (middle). On the right is the difference between the two.
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Chapter 4

Joint estimation of biogenic and fossil-fuel
CO2 fluxes

4.1 Introduction

Rising atmospheric concentrations of CO2 are the main driver of anthropogenic climate change. The spatial
and temporal variations in the global atmospheric CO2 emissions can be inferred from bottom-up forward
models or inverse models that have the capability to infer a combined global distribution of ffCO2 and bio-
spheric emissions. In recent past, inverse estimates of CO2 emissions were inferred from in-situ measure-
ments. These measurements were combined with atmospheric transport models (based on observed meteo-
rology) in an inverse modeling framework that generates estimates of net exchange of land and oceanic CO2
fluxes [103, 27, 104, 105]. However, due to sparse spatial coverage of in-situ measurements, the problem of
atmospheric inversions is mathematically underdetermined and hence global CO2 fluxes can be reasonably
inferred only for large regions spread over multiple latitudes and longitudes. Satellite measurements of at-
mospheric CO2 are a promising source for overcoming in-situ data limitations [106]. These data, combined
with in-situ measurements, provide an opportunity to infer sub-grid-scale CO2 fluxes, thereby leading to
improved modeling, monitoring, and understanding of sinks and sources of CO2 [107]. In recent years,
these data have been utilized to perform global inversions for improved understanding of CO2 exchange.
However significant effort is required to reduce the uncertainty and refine the estimates of CO2 exchange
even at regional scale. This improvement in inverse estimates can aid in verification and monitoring of
ffCO2 emissions and formulation of policies for managing risks associated with climate change.

An important facet of the inversions for inferring global CO2 exchange is that they cannot separate ffCO2
and biospheric fluxes without the use of tracers like the radiocarbon isotope 14C. Recently, atmospheric
inverse models have been suggested as a potential tool for independent verification of the bottom up es-
timates of ffCO2 emissions; however due to large uncertainties, constraining continental or national level
ffCO2 emissions through atmospheric inverse models remains infeasible [5]. Improvements in terms of in-
creasing in-situ and satellite measurements of CO2 concentration and radiocarbon isotope 14C have been
suggested to reduce this uncertainty. Targeted efforts (e.g. Megacities Carbon Project [108, 109, 110]; Hes-
tia Project [37]; Indianapolis Flux Experiment (INFLUX), http://influx.psu.edu/) are ongoing with
their focus on constraining the fossil fuel CO2 (ffCO2) fluxes in urban areas. However, these efforts cannot
be replicated at large regional or national scales, especially in developing countries. Thus, they can only
act as verification base cases for refining inverse modeling methodology predicated on a large number of
CO2 concentration measurements. In the next decade, remote sensing of CO2 will provide a large number
of observations which would reduce the ratio of observations to estimated fluxes, thereby reducing the un-
certainty of ffCO2 fluxes estimated within an inverse modeling framework. Other than reducing the ratio of
observations to estimated fluxes, improvements are also required in transport and inverse models to realize
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the full potential of the extra information provided by satellite observations.

In case of inverse models, these methodological improvements include, but are not limited to, estimation
of fluxes over variable grids (see [111]) and designing improved random field models to account for the
non-stationarity in the fluxes. A random field model proposed in Chapter 2 is one such approach. Another
approach to modeling a non-stationary and non-smooth random field (e.g. distribution of ffCO2 ) is sug-
gested in this chapter. This method utilizes the information of the variability of the covariates of the ffCO2
fluxes to develop covariance structures that define the underlying distribution. It is a novel approach as co-
variates of the dependent variables are used to define covariance and a prior for ffCO2 fluxes. In this study,
we assess the ability of these covariate-based covariance structures to disaggregate ffCO2 and biospheric
fluxes without using any information from radioisotope tracers.

4.2 Objectives and case studies

The primary objective of this study is to disaggregate biospheric and fossil-fuel fluxes at grid-scale (1◦×1◦)
on the basis of error covariance models rather than through tracer-based CO2 inversions. This study also
makes several novel methodological contributions. It presents methods for (1) defining covariance structures
for discontinuous non-smooth fields based on auxiliary variables, (2) selecting the best covariance structure
from several competing covariance structures describing the same field, and (3) demonstrates the applica-
bility of a simultaneous optimization scheme for obtaining covariance parameters and a set of best auxiliary
variables within a geostatistical inverse modeling framework. The scientific goal of this research is to more
accurately define the underlying structure of the processes governing the spatio-temporal distribution of the
biospheric and ffCO2 fluxes.

To this end, a separable stationary spatio-temporal exponential covariance model is prescribed for biospheric
fluxes. A semi-stationary diagonal covariance model, derived by comparing auxiliary variables correlated
with ffCO2 fluxes and inventory estimates of ffCO2 emissions, is used to represent the underlying distribu-
tion of ffCO2 fluxes. The covariance matrices for ffCO2 are derived from the spatial distribution of auxiliary
variables at sub-grid-scale spatial resolution. After selecting covariance models associated with biospheric
and ffCO2 fluxes, we perform a joint-inversion to disaggregate these fluxes. As both negative and positive
fluxes are obtained for ffCO2 , a non-negativity constraint is imposed by Lagrange multipliers. The quality
of disaggregation is examined by comparing the inferred spatial distribution of biospheric fluxes and fossil-
fuel emissions in synthetic-data and real-data inversions. In addition to disaggregation of fluxes, the ability
of the covariance models to explain the fossil-fuel emissions over North America is also examined.

Two case studies are performed to assess the methodology employed for disaggregating biospheric and
ffCO2 fluxes. In the first case study, we assess the quality of disaggregation within a pseudo-data setup
whereby synthetic CO2 observations are generated by transporting combined biospheric and ffCO2 fluxes
forward. This is done by multiplying them by the transport sensitivity matrix (H) obtained from the Stochas-
tic Time Inverted Lagrangian Model, driven by meteorological fields from the Weather Research and Fore-
casting model [76]. We refer to this as WRF-STILT. For this purpose, the biospheric fluxes from Carnegie
Ames Stanford Approach terrestrial carbon cycle model (CASA), as configured for the Global Fire Emis-
sions Database v2 project [112, 113] and ffCO2 fluxes from the Carbon Dioxide Information Analysis Center
(CDIAC) global monthly fossil fuel inventory at 1◦× 1◦ were used (see [114]). Diurnal variability in the
CDIAC ffCO2 fluxes were introduced by using the scaling factors given in [115]. CASA-GFED v2 fluxes
can only be obtained at monthly scale, hence for inversion they were downscaled using the method in [116]
which is based on net shortwave radiation and near-surface temperature data from the NASA Global Land
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Data Assimilation System (GLDAS, [117]). The model-data mismatch variances for measurements were
included in this case study and they varied by observation locations and month.

In the second case study, the same transport sensitivity matrix (H) was used to disaggregate biospheric and
ffCO2 fluxes. Only 3 afternoon observations with data gaps were included while performing inversions (in
both the case studies). The covariance and model-data mismatch parameters in this case study were obtained
within a dual optimization framework as outlined in the next section. The competing covariance structures
and auxiliary variables for ffCO2 estimation in both case studies were selected by comparing Bayesian
Information Criterion (BIC) and the results for these are presented in Sec. 4.4.

The inferred grid-scale fluxes in the pseudo-data study are compared with the true monthly biospheric and
ffCO2 fluxes (CASA-GFED and CDIAC) by computing root mean squared error (RMSE) and correlation
coefficient at grid-scale. Inversion results are also compared qualitatively by examining the spatial patterns
of inferred fluxes to those of the true fluxes.

4.3 Numerical details

4.3.1 Flux domain and resolution

In the joint inversion, biospheric fluxes are estimated at a 3-hourly temporal resolution and ffCO2 fluxes
are estimated at 8-day interval for each month in 2008. They are then aggregated up to monthly resolution.
These fluxes are obtained at grid-scale for a land area between 10◦ N to 70◦ N and 50◦ W to 170◦ W. The
sensitivity of fluxes to measurements was obtained from WRF-STILT (for details see [2]). As suggested
in [78], only afternoon measurements from 35 towers in North America in 2008 were used in this research.

4.3.2 Methods

The geostatistical inverse modeling (GIM, [27, 2]) is a Bayesian method in which a model of the trend of the
CO2 flux distribution replaces the prior flux estimates used in traditional Bayesian inverse modeling. The
criterion of remaining close to a prior flux estimate is replaced by a criterion of preserving a spatial and/or
temporal correlation in the distribution of the CO2 flux residuals. The objective function for the GIM can be
written as is:

2L(s,βββ) = (z−Hs)T R−1(z−Hs)+(s−X)T Q−1(s−X) (4.1)

where z are CO2 concentrations, H is the sensitivity matrix, s are the estimated CO2 fluxes, R is the model-
data mismatch, X are auxiliary variables, βββ are estimated drift coefficients and Q is the error covariance
matrix. In this study, we modify this objective function to solve for two different flux fields, i.e., ffCO2
and biospheric fluxes. To estimate these flux fields we modify the objective function given in Eq. 4.1. The
modified objective function can be written as:

2L(sbio,s f f ,βββbio,βββ f f ) = (z− [Hbiosbio +H f f s f f ])
T R−1 (z− [Hbiosbio +H f f s f f ])

+ (sbio−Xbioβββbio)
T Q−1

bio(sbio−Xbioβββbio)

+ (s f f −X f f βββ f f )
T Q−1

f f (s f f −X f f βββ f f ) (4.2)

73



where subscripts bio and f f represent the biospheric and fossil fuel components of the symbols defined in
Eq. 4.1. The sensitivities of CO2 concentrations (z) to fluxes obtained from WRF-STILT were aggregated
at 3-hourly and 8-day temporal resolution to get Hbio and H f f . The model-data mismatch (R) and error
covariance parameters (Q f f and Qbio) were obtained within a Restricted Maximum Likelihood (REML)
framework as described in [75].

4.3.3 Biospheric and ffCO2 covariance structure

A stationary, separable spatio-temporal covariance function was used to model the underlying correlation of
biospheric flux residuals. This function which can be written as (for details see [2]):

Qbio = σ
2
[

exp
(
−

htemp,bio

ltemp,bio

)
⊗ exp

(
−

hspat,bio

lspat,bio

)]
(4.3)

where σ2 is the variance in space and time, htemp,bio represents the separation distances/lags between esti-
mation locations in space and time for biospheric fluxes and ltemp,bio and lspat,bio are the spatial and temporal
correlation range parameters for biospheric fluxes. Temporal covariance for biospheric fluxes was only
defined across days and no covariance was prescribed for fluxes estimated within a day.

In the case of ffCO2 we assumed no spatio-temporal covariance between flux residuals and this covariance
structure was defined as:

Q f f =

a


k1 0 0
0 k2 0
. . . . . . . . .
0 0 kr

+b


1 0 0
0 1 0
. . . . . . . . .
0 0 1


 (4.4)

where a and b are tuning parameters to be estimated and k1 . . .kr, describes the independent covariance of
flux residuals at each grid-cell. The parameters associated with Q f f also govern the intensity of ffCO2
estimates at grid-scale.

A novel approach was adopted in this study to obtain ki, i = 1 . . .r shown in Eq. 4.4. We assumed that ki

in Eq. 4.4 can be prescribed by the covariates of ffCO2 fluxes. Three of these covariates i.e., nightlight
intensity, population density and percentage of built up area were available at a spatial resolution higher
than 1◦× 1◦. Hence we computed the mean, variance and maximum value at grid-scale of (1) nightlight
intensity (year: 2008; spatial resolution 1 km), (2) population density (year: 2008; spatial resolution 2.5
km), and (3) percent built up area (year: 2008; spatial resolution 10 km) from available higher resolution
estimates of these quantities. This resulted in a set of 9 ki (i.e., i = 1 . . .9) that can be used to define Q f f .
In addition to these 9 ki we also added another ki representing the mean ffCO2 fluxes obtained by forming
a temporally scaled combined fossil fuel inventory of Vulcan [4] and ODIAC [118, 15] for our estimation
domain (see [2]). The use of the inventory to prescribe ki was done to assess the ability of the corresponding
covariance in disaggregating ffCO2 fluxes from biospheric fluxes. To select an appropriate set of ki for
performing joint inversion, we employed an iterative dual-optimization scheme through which we obtained
an “optimal ki” based on BIC.

Model-data mismatch errors were assumed to be uncorrelated in space and time, yielding a diagonal matrix
R. A different variance was estimated for each tower as part of the covariance parameter optimization.
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4.3.4 Model of the trend

For explaining the variability of ffCO2 fluxes as seen through atmospheric concentration measurements
we included mean nightlight intensity, population density, percent built up area, percent urban area and
combined Vulcan and ODIAC fossil fuel inventory in X f f . These covariates were included to aid in dis-
aggregation of ffCO2 fluxes from biospheric fluxes. Xbio in this study was represented as a vector of ones
associated with 3-hourly estimation time periods. The estimated βββbio associated with them represents the
constant mean value in space and time of fluxes across grid cells.

4.3.5 Covariance, covariate selection and parameter optimization

A novel dual simultaneous optimization scheme was employed to (1) obtain parameters of Q f f , Qbio and
model data mismatch and (2) for selecting the best covariates of ffCO2 fluxes for inclusion in X f f . In this op-
timization scheme, the REML (see [27]) objective function was used for optimizing covariance parameters.
This objective function can be written as:

L = log |HQHT +R|+ log |(HX)T (HQHT +R
)−1

(HX) |
+

[
zT ((HQHT +R)−1− (HQHT +R)−1HX− (HQHT +R)−1HX

)
z
]

(4.5)

where all symbols are as defined earlier and Q and X can be given as:

Q =

[
Qbio 0

0 Q f f

]
(4.6)

X =

[
Xbio
X f f

]
(4.7)

A large-scale trust region, reflective Newton’s algorithm, was used to optimize the function given in Eq. 4.5.
In addition, a branch-and-bound discrete optimization (for details see [119]) algorithm was employed to
select covariates in X f f to avoid overfitting of the model of the trend. In this study, BIC allowed comparison
of all possible combinations of a superset of auxiliary variables and covariance models. Thus, as part of
each iteration of the optimization of the likelihood function (Eq. 4.5), the branch-and-bound algorithm was
used to select the best model associated with a covariance structure in a backward elimination framework. A
likelihood function was used to obtain an optimal set of auxiliary variables associated with each covariance
model. The likelihood function used as part of discrete optimization framework can be given as:

BIC = log |HQHT +R|+
[
zT ((HQHT +R)−1− (HQHT +R)−1HX− (HQHT +R)−1HX

)
z
]
+ p log(n)

(4.8)
where n represents the number of observations and p is the number of parameters included in the inverse
model. This process of optimizing covariance parameters and selecting a model for X f f was repeated for
10 different covariance structure of Q f f described in Sec. 4.3.3 for all 12 months of 2008. Out of these
10 different covariance structures, the set of ki and X f f that resulted in minimum BIC were selected for
performing the joint inversion.
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4.3.6 Non-negativity constraints on ffCO2 fluxes

The joint inversion performed after estimating covariance parameters and obtaining a set of “best” covariates
for X f f resulted in some grid cells with negative ffCO2 fluxes. To avoid this non-physical result, we imposed
non-negativity on the ffCO2 fluxes during the joint inversion. No constraints were imposed on the biospheric
fluxes as they can be negative or positive depending on the seasonal variation in respiration and gross primary
productivity.

Though there are many methods like data transformation and Markov Chain Monte Carlo for inferring s
(see [120]), none of them are suitable for imposing non-negativity constraints on a large state space. Hence,
in this work, we used Lagrange multipliers to obtain non-negative ffCO2 fluxes. This method consists of
rewriting the original function into a Lagrange formulation as given in Eq. 4.9.

h
[
L(s f f ,βββ f f ),λλλ

]
= f

[
L(s f f ,βββ f f )

]
−

p

∑
i=1

λi
[
δi
(
L(s f f ,βββ f f )

)
−bi

]
(4.9)

where L(s f f ,βββ f f ) must satisfy the constraints such that δi
[
L(s f f ,βββ f f )

]
≥ bi, where m is the total number of

active constraints, and λλλ = {λ1,λ2, . . .λp} are the Lagrange multipliers. This involves setting the derivative
of the Lagrange function equal to zero by satisfying the first-order Kuhn-Tucker conditions (for additional
details see [121]). Note that since non-negativity constraints were imposed on the ffCO2 , fluxes we have
only included those components of Eq. 4.2 on which non-negativity was imposed in Eq. 4.9. Non-negativity
constraints were imposed for an inversion performed using the best covariance structure and auxiliary vari-
ables obtained in the previous step. Since only fluxes are updated while imposing non-negativity, the uncer-
tainty associated with the fossil fuel and biospheric fluxes were not changed.

4.4 Results and discussion

In this section, we first describe results of model selection of auxiliary variables and covariance structure.
This is followed by the performance of inversions in estimating ffCO2 fluxes for January and June which are
representative of winter and summer. We perform two case studies: (1) using pseudo-data (synthetic CO2
observations) and (2) using real CO2 observations.

4.4.1 Model selection

In the real-data case study we find a consistent pattern for all months. From the 10 covariance structure
described in Sec. 4.3.5, the Vulcan and ODIAC-based covariance structure is selected by BIC for all months.
However, the results vis-à-vis covariates across months are not consistent. Thus mean population density is
selected for six months, followed by mean nightlight intensity and fossil fuel inventory which are selected
for four months. Percent built up area and percent urban area are least important in explaining ffCO2
fluxes and are only selected during two and one months respectively (for details see Table 4.1). Given
these results, we can conclude that mean population density and nightlight intensity are the most important
factors associated with ffCO2 fluxes. In this study, we used Vulcan and ODIAC in X f f and in defining Q f f .
However, in cases where independent verification of ffCO2 fluxes are required, these data cannot be used
and it can be concluded from the results in Table 4.1 that population density and nightlight intensity are most
reliable indicators of ffCO2 emissions. This is not surprising as other studies have found similar results. It is
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Table 4.1: Best covariates and covariance model in the real-data case study. Selections for January–
December 2008 are shown. Note: An asterisk indicates a covariate.

Mean Percent
Mean population Percent urban Vulcan Best covariance

Month nightlight* density* built-up area* area* & ODIAC* model
1 Yes Vulcan & ODIAC
2 Yes Yes Vulcan & ODIAC
3 Yes Yes Yes Vulcan & ODIAC
4 Yes Yes Vulcan & ODIAC
5 Yes Vulcan & ODIAC
6 Yes Vulcan & ODIAC
7 Yes Vulcan & ODIAC
8 Yes Vulcan & ODIAC
9 Yes Vulcan & ODIAC

10 Yes Yes Vulcan & ODIAC
11 Yes Yes Vulcan & ODIAC
12 Yes Vulcan & ODIAC

also important to analyze second-best covariance models, since in verification studies fossil fuel inventories
cannot be used to prescribe covariance in inversions. There is no single covariance model that performs
consistently across months, but, overall, a covariance based on maximum nightlight intensity is selected in
most months (see Appendix C).

In the pseudo-data case study we found that Vulcan and ODIAC-based covariance structure is not selected
by BIC (Table 4.2). Additionally it also not selected as a significant covariate in any month. This clearly
indicates that there are significant differences between these two inventories. However, as “Vulcan and
ODIAC” inventory is selected in the real-data case study, it correlates more with the underlying spatio-
temporal fossil fuel distribution in North America. The spatial distribution of CDIAC was found to be more
correlated with variance in population density.

4.4.2 Disaggregated ffCO2 and biospheric fluxes

In both real and pseudo-data cases, disaggregating biospheric and ffCO2 fluxes on the basis of covariance
structure proved to be more difficult in summer versus winter. In both case studies the magnitude of fluxes
was not accurate across months, though this problem was more acute in summer. ffCO2 fluxes were only
detected in major cities. This primarily happened due to the difference in the signal of biospheric and
ffCO2 fluxes which was higher in summer. Other than seasonal variation of gross primary productivity, the
magnitude of the ffCO2 signal (in case of real data) was extremely sensitive to a and b parameters in the
Q f f . A small a resulted in smaller magnitude of fossil fuel fluxes across all months in the year whereas
a larger a increased the magnitude of the ffCO2 fluxes and also resulted in increased number of negative
values. Even though a was determined through REML, the uncertainty on a, estimated by computing the
Hessian of the objective function, was extremely high. Thus, the accuracy of a in Q f f in real-data inversions
is doubtful. This problem was not observed in the pseudo-data study as the parameter a and b were known
and pre-computed by the likelihood method described in [27, 122]
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Table 4.2: Best covariates and covariance models for the pseudo-data case study. Selections for January–
December 2008 are shown. Note: An asterisk indicates a covariate.

Mean Percent
Mean population Percent urban Vulcan Best covariance

Month nightlight* density* built-up area* area* & ODIAC model
1 Yes Yes Variance, pop. density
2 Yes Yes Yes Variance, pop. density
3 Yes Yes Variance, pop. density
4 Yes Variance, pop. density
5 Yes Yes Variance, pop. density
6 Yes Variance, pop. density
7 Yes Variance, pop. density
8 Yes Variance, pop. density
9 Yes Variance, pop. density

10 Yes Yes Variance, pop. density
11 Yes Variance, pop. density
12 Yes Yes Variance, pop. density

Table 4.3: Root mean squared error (RMSE) and correlation coefficient of the estimated biospheric and
ffCO2 fluxes in the pseudo-data case for January and June 2008. CDIAC and CASA-GFED are considered
to provide the true ffCO2 and biospheric CO2 fluxes.

Correlation RMSE
Estimated ffCO2 fluxes with CDIAC (January) 0.62 0.52

Estimated biospheric fluxes with CASA-GFED (January) 0.76 0.58

Estimated ffCO2 fluxes with CDIAC (June) 0.54 0.68
Estimated biospheric fluxes with CASA-GFED (June) 0.79 0.55

In the real-data case study, the correlation coefficient of fossil fuel fluxes (to the real fluxes) was higher in
winter. A similar trend was also observed with respect to RMSE which was lower in winter. Inferred fluxes
are shown in Fig. 4.1 and 4.2 for January and June.

In the pseudo-data case study, in comparison to summer, the correlation coefficient of ffCO2 fluxes was
higher and a similar trend was also observed with respect to RMSE which was lower in winters (see Ta-
ble 4.3). However, for the estimated biospheric fluxes, the correlation coefficient and RMSE did not vary
considerably between January and June. Total disaggregation between ffCO2 and biospheric fluxes was not
achieved in June and some residual ffCO2 fluxes were observed in the biospheric component of the disag-
gregated fluxes (see Fig. 4.2). This was not observed in January when the gross primary productivity was
lower. Overall, even with the aid of covariates, we were not able to detect the summer signal of ffCO2 fluxes
which clearly points to the need of having a radioisotope tracer and more measurements in inversions.
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Figure 4.1: Estimated January biospheric (top) and ffCO2 fluxes (bottom) for June for the real-data study.
Units: moles m2s−1.
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Figure 4.2: Estimated June biospheric (top) and ffCO2 fluxes (botom) for June for the real-data study. Units:
moles m2s−1.
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4.5 Conclusions

The patterns of the disaggregated ffCO2 fluxes in January are similar to the inventory data. The Vulcan-
ODIAC, nightlight and population density-based covariance structures are able to capture the underlying
distribution of the ffCO2 fluxes in disaggregated inversions. However, the magnitude of the fluxes is not
adequately captured by these diagonal covariance structures. These result indicates that the use of tracers is
essential for isolating fossil fuel CO2 emissions from biospheric fluxes (e.g., radiocarbon, carbon monox-
ide [123, 110]). Other than tracer information, ongoing efforts of estimating ffCO2 emissions at fine scale
in urban areas (e.g., Megacities Project) can provide information for constructing better ffCO2 covariance
models. The covariance structures proposed in this research, on their own, cannot disaggregate ffCO2 and
biospheric fluxes from CO2 concentrations; however, they can help define the covariance in tracer-based
inversions that attempt to disaggregate biospheric and ffCO2 fluxes. Additionally, they can also be used to
construct covariance matrices in inversions that only solve for biospheric fluxes.
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Chapter 5

Conclusions

In this study, we addressed the question of estimating ffCO2 emissions from limited CO2 concentration
measurements. We investigated the construction of spatial parameterizations (random field models) for
ffCO2 emissions, scalable inversion techniques for inferring them and whether they could be estimated
from CO2 concentration measurements alone, without recourse to species like CO (which are markers of
incomplete combustion) or radiocarbon (14C) which are not present in ffCO2 , but are available, in a known
proportion, in the biosphere.

Random field models: ffCO2 emissions are characterized by a strongly non-stationary or multiscale spatial
distribution. We constructed and tested three separate random field models for such emissions. The first,
based on wavelets, is general i.e., it can be used at regional scale while representing ffCO2 emissions at
a 1◦ resolution. The model is not particularly low-dimensional, and when used in a limited-measurement
scenario, requires a novel sparse reconstruction algorithm to guard against over-fitting. The sparse recon-
struction algorithm employs elements of compressive sensing, maintains the non-negativity of ffCO2 emis-
sions and uses spatial patterns encoded in images of lights at night (a proxy for ffCO2 emissions) to perform
the atmospheric inversion. The second random field model is based on Gaussian kernels and provides an
efficient parameterization when ffCO2 sources are very localized, e.g., on the Great Plains. The third pa-
rameterization uses a multivariate Gaussian field model for ffCO2 emissions, with the covariance developed
from an amalgamation of several proxies of ffCO2 emissions e.g., lights at night, population density etc.
The method for selecting these proxies was also developed in our investigations.

The three models, the estimation problem formulated with them, and in two cases, the inversion algorithms,
are unique since they are used for estimating spatially-resolved ffCO2 emissions at the regional scale. They
were demonstrated using synthetic and real data. There are no competing models and methods; current
ffCO2 emission estimates have been drawn only for individual urban regions.

Scalable inversion techniques: We investigated ensemble Kalman filters (EnKF) as a potential mechanism
for solving the ffCO2 estimation problem, while quantifying the uncertainty in the estimates. A particular
aspect of EnKF, the Gaussian assumptions built into them, was investigated with respect to their impact on
ffCO2 estimates. We perform this check by comparing with solutions of the ffCO2 estimation problem using
a Markov chain Monte Carlo (MCMC) method. We find that EnKF and MCMC yield similar mean values
of ffCO2 emissions but the variance of the estimates are quite different. We believe that the root cause of the
difference is numerical (too few MCMC samples or over-inflation in EnKF using data assimilation), rather
than in modeling assumptions.

Measurement variables: We find that in order to estimate spatially-resolved ffCO2 emissions at a regional
scale, it will be necessary to measure radiocarbon or some other marker of fossil-fuel combustion (e.g.,
CO). ffCO2 and biogenic CO2 fluxes display very different spatial distributions. We hypothesized that this
difference, as captured by their respective covariance models, would be sufficient to estimate them jointly
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from CO2 concentration measurements, without radiocarbon or other tracers. This hypothesis held only dur-
ing the winter months, when gross primary productivity is comparable to ffCO2 emissions. In pseudo-data
inversions, we obtained correlations of around 0.7 with true emissions. In summer, the correlation degraded
to around 0.5, indicating that even the spatial distribution was wrong. Apart from spatial distribution, the
actual error in the inferred ffCO2 emissions was around 50%, indicating that a large fraction of ffCO2 emis-
sions were being estimated as biogenic fluxes. This indicates that future estimates of ffCO2 emissions may
only be possible with a far higher density of measurement locations (we used 35 towers) as well as the use
of tracer (e.g., CO, radiocarbon etc.) information, so that the ffCO2 signal may be uniquely captured.
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Appendix A

Glossary

Table A.1: Definitions of Greek symbols

ε Measurement error
ε2 Convergence tolerance for StOMP
ε3 Convergence tolerance for non-negativity imposition
φ Basis vector
ΦΦΦ Matrix of basis vectors, N×L
Φ̃ΦΦ Matrix of basis vectors for K periods, diag(ΦΦΦ)

Φ̃ΦΦR Basis matrix for modeling FR , (NR K)× (LK)

Φ̃ΦΦR ′ Basis matrix for modeling FR ′ , (NR ′K)× (LK)

Φ̃ΦΦ
′
R Φ̃ΦΦR with columns multiplied by weights from fpr

Φ̃ΦΦ
′
R ′ Φ̃ΦΦR ′ with columns multiplied by weights from fpr

Φ̃ΦΦ
′
R ′ Basis matrix for modeling FR ′ , (NR ′K)× (LK)

ψ Random measurement vector for CS
ΨΨΨ Random projection matrix / Measurement matrix for CS
ϒϒϒ “Observations”; Y or ∆Y
ΓΓΓ G or G′
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Table A.2: Definitions of symbols

CS Compressive Sensing
D Domain size, along one axis
E Non-negative ffCO2 emissions, over K 8-day periods, in R
f CO2 emission, over a spatial domain. This is not a time-series.
fk CO2 emission averaged over a 8-day period k

fk,R ffCO2 emissions averaged over a 8-day period k inside R
FR CO2 emissions time-series FR = {fk},k = 1 . . .K, in the grid-cells covering the Lower 48

states of US, R ; (NR K)×1
FR ′ CO2 emissions time-series in the grid-cells other than those covering the Lower 48 states of US;

the complement of FR ; (NR ′K)×1
fpr Prior flux or a guess of what the f might be
fV Vulcan emissions at 1 degree resolution, averaged over 2002

fV
(s)

Vulcan emissions at 1 degree resolution, averaged over 2002, as represented by a sparse basis set
fV,k Vulcan emissions at 1 degree resolution, but averaged over the kth 8-day period
g A 1D signal
g′ A measured 1D signal
G The gain matrix; (KsNs +Mcs)× (LK)
G′ The “normalized” gain’ matrix; (KsNs +Mcs)× (nzwK)
H Transport model
K Number of 8-day time-periods in a year, K = 45
Ks The number of times a tower sensor senses in a year. Towers measure once every 3 hours
L Number of non-zero weights in a wavelet decomposition; sparsity
M The number of wavelet levels the grid can be decomposed to

Mcs The number of random projections used to enforce zero flux outside R
N Number of grid cells; equal to 2M×2M

NR The number of grid-cells in R
NR ′ The number of grid-cells in R ′

Ns Number of sensors
R Random projection matrix, used to enforce zero flux outside R ; Mcs× (NR ′K)

R Region of interest, lower 48 states of US
R ′

Region that is in the grid, but outside the ower 48 states of US
StOMP Stagewise Orthogonal Matching Pursuit, [60]

US United States
w Weights of a wavelet basis set
w′ Weights of a wavelet basis set, normalized by weights of a guessed flux from a proxy

W (s) Set of weights corresponding to the sparsified set of wavelet bases
X A proxy for CO2 emissions, e.g., nightlights

X(s) Proxy, sparsified
y Modeled CO2 concentrations

yobs Measured CO2 concentrations
Y LHS of optimization problem; Y = {yobs,0}; (KsNs +Mcs)×1

94



Appendix B

Measurement locations

This is a list of CO2 measurement towers that were used in this study. They are targeted at biospheric CO2
fluxes and their locations are not optimized for ffCO2 emissions.
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Table B.1: List of observation towers and their locations.

Tower symbol Full name Latitude & Longitude Height above ground (meters)

AMT Argyle 45.03 N, -68.68 W 107
ARM Southern Great Plains 36.80 N, -97.50 W 60
BAO Boulder Atmospheric Observatory 40.05 N, -105.01 W 300
BRW Barrow 71.32 N, -156.61 W 17
CDL Candle Lake 53.99 N, -105.12 W 30
CEN Centerville 40.79 N, -92.88 W 110
CHI Chibougamau 49.69 N, -74.34 W 30
CVA Canaan Valley 39.06 N, -79.42 W 7
EGB Egbert 44.23 N, -79.78 W 3
ETL East Trout Lake 54.35 N, -104.99 W 105
FIR Fir 44.65 N, -123.55 W 38
FRD Fraserdale 49.88 N, -81.57 W 40
GAL Galesville 44.09 N, -91.34 W 122
HDP Hidden Peak, Snowbird 40.56 N, -111.65 W 18
HFM Harvard Forest 42.54 N, -72.17 W 30
KEW Kewanee 41.28 N, -89.97 W 140
LEF Park Falls 45.95 N, -90.27 W 396
LJA La Jolla 32.87 N, -117.26 W 5
LLB Lac LaBiche 54.95 N, -112.45 W 10
MAP Mary’s Peak 44.50 N, -123.55 W 8
MEA Mead 41.14 N, -96.46 W 122
MET Metolius 44.45 N, -121.56 W 34
MOM Morgan Monroe 39.32 N, -86.41 W 48
NGB NGBER 43.47 N, -119.69 W 7
NWR Niwot Ridge 40.05 N, -105.58 W 5
OZA Ozark 38.74 N, -92.20 W 30
ROL Round Lake 43.53 N, -95.41 W 110
SBL Sable Island 43.93 N, -60.02 W 25
SCT South Carolina Tower 33.41 N, -81.83 W 305
SNP Shenandoah National Park 38.62 N, -78.35 W 17
SPL Storm Peak Lab 40.45 N, -106.73 W 9
WBI West Branch 41.73 N, -91.35 W 379
WGC Walnut Grove 38.27 N, -121.49 W 483
WKT Moody 31.32 N, -97.33 W 457
YAH Yaquina Head 44.67 N, -124.07 W 13
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Appendix C

Second-best covariates

Table C.1: Second-best covariates and covariance model in the real-data case from January to December
2008. Note: The asterisk denotes a covariate.

Mean Percent
Mean population Percent urban Vulcan Best covariance

Month nightlight* density* built-up area* area* & ODIAC* model
1 Yes Variance, pop. density
2 Yes Variance, pop. density
3 Yes Yes Yes Variance, pop. density
4 Yes Yes Variance, nightlights
5 Yes Variance, built up area
6 Yes Mean, built up area
7 Yes Mean, built up area
8 Yes Max. nightlight
9 Yes Max. pop. density
10 Yes Yes Variance, built up area
11 Yes Yes Max. nightlights
12 Yes Yes Max. nightlights
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